393
Views
2
CrossRef citations to date
0
Altmetric
Review

The use of alkaline phosphatase as a bone turnover marker after spinal cord injury: A scoping review of human and animal studies

, ORCID Icon, , , ORCID Icon, ORCID Icon, , & ORCID Icon show all

References

  • Zehnder Y, Lüthi M, Michel D, Knecht H, Perrelet R, Neto I, et al. Long-term changes in bone metabolism, bone mineral density, quantitative ultrasound parameters, and fracture incidence after spinal cord injury: a cross-sectional observational study in 100 paraplegic men. Osteoporos Int 2004;15(3):180–189. doi:10.1007/s00198-003-1529-6.
  • Eser P, Frotzler A, Zehnder Y, Denoth J. Fracture threshold in the femur and tibia of people with spinal cord injury as determined by peripheral quantitative computed tomography. Arch Phys Med Rehabil 2005 Mar;86(3):498–504. doi:10.1016/j.apmr.2004.09.006.
  • Papaioannou A, Morin S, Cheung AM, Atkinson S, Brown JP, Feldman S, et al. 2010 clinical practice guidelines for the diagnosis and management of osteoporosis in Canada: summary. CMAJ 2010 Nov 23;182(17):1864–1873. doi:10.1503/cmaj.100771.
  • Leslie WD, Lix LM, Langsetmo L, Berger C, Goltzman D, Hanley DA, et al. Construction of a FRAX® model for the assessment of fracture probability in Canada and implications for treatment. Osteoporosis Int 2011;22(3):817–827. doi:10.1007/s00198-010-1464-2.
  • Schuit SCE, van der Klift M, Weel AEAM, de Laet CEDH, Burger H, Seeman E, et al. Fracture incidence and association with bone mineral density in elderly men and women: the Rotterdam study. Bone 2004;34(1):195–202. doi:10.1016/j.bone.2003.10.001.
  • Cervinka T, Lynch CL, Giangregorio L, Adachi JD, Papaioannou A, Thabane L, Craven BC. Agreement between fragility fracture risk assessment algorithms as applied to adults with chronic spinal cord injury. Spinal cord 2017 Nov;55(11):985–993. doi:10.1038/sc.2017.65.
  • Levis S, Altman R. Bone densitometry: clinical considerations. Arthritis Rheum 1998;41(4):577–587. doi:10.1002/1529-0131(199804)41:43.0.CO;2-7.
  • Davis JW, Ross PD, Wasnich RD, Maclean CJ, Vogel JM. Comparison of cross-sectional and longitudinal measurements of age-related changes in bone mineral content. J Bone Miner Res 1989;4(3):351–357. doi:10.1002/jbmr.5650040309.
  • Harris S, Dawson-Hughes B. Rates of change in bone mineral density of the spine, heel, femoral neck and radius in healthy postmenopausal women. Bone Miner 1992;17(1):87–95. doi:10.1016/0169-6009(92)90713-n.
  • Dauty M, Perrouin Verbe B, Maugars Y, Dubois C, Mathe JF. Supralesional and sublesional bone mineral density in spinal cord-injured patients. Bone 2000;27(2):305–309. doi:S8756-3282(00)00326-4 [pii].
  • Nishizawa Y, Nishizawa Y, Ohta H, Ohta H, Miura M, Miura M, et al. Guidelines for the use of bone metabolic markers in the diagnosis and treatment of osteoporosis (2012 edition). J Bone Miner Metab 2013;31(1):1–15. doi:10.1007/s00774-012-0392-y.
  • Wheater G, Elshahaly M, Tuck SP, Datta HK, van Laar JM. The clinical utility of bone marker measurements in osteoporosis. J Transl Med 2013;11(1):201. doi:10.1186/1479-5876-11-201.
  • Lowe D, Sanvictores T, John S. Alkaline Phosphatase. [Updated 2021 Aug 11]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2021 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK459201/.
  • Gundberg CM, Looker AC, Nieman SD, Calvo MS. Patterns of osteocalcin and bone specific alkaline phosphatase by age, gender, and race or ethnicity. Bone 2002 Dec;31(6):703–708. doi:S875632820200902X [pii].
  • Chen SC, Tsai SP, Jhao J, Jiang W, Tsao CK, Chang L. Liver fat, hepatic enzymes, alkaline phosphatase and the risk of incident type 2 diabetes: A prospective study of 132,377 adults. Sci Rep 2017;7(1):4649. doi:10.1038/s41598-017-04631-7.
  • Magnusson P, Sharp CA, Magnusson M, Risteli J, Davie MW, Larsson L. Effect of chronic renal failure on bone turnover and bone alkaline phosphatase isoforms. Kidney Int 2001;60(1):257–265. doi:S0085-2538(15)47842-1 [pii].
  • Lavela SL, Weaver FM, Goldstein B, Chen K, Miskevics S, Rajan S, Gater DR, Jr. Diabetes mellitus in individuals with spinal cord injury or disorder. J Spinal Cord Med 2006;29(4):387–395. doi:10.1080/10790268.2006.11753887.
  • Rankin KC, O'Brien LC, Segal L, Khan MR, Gorgey AS. Liver adiposity and metabolic profile in individuals with chronic spinal cord injury. BioMed Res Int 2017;2017:1–11. doi:10.1155/2017/1364818.
  • Fischer MJ, Krishnamoorthi VR, Smith BM, Evans CT, St. Andre JR, Ganesh S, et al. Prevalence of chronic kidney disease in patients with spinal cord injuries/disorders. Am J Nephrol 2012;36(6):542–548. doi:10.1159/000345460.
  • Gater DR, Farkas GJ, Tiozzo E. Pathophysiology of neurogenic obesity after spinal cord injury. Top Spinal Cord Inj Rehabil 2021;27(1):1–10. doi:10.46292/sci20-00067.
  • Marchesini G, Moscatiello S, Di Domizio S, Forlani G. Obesity-associated liver disease. J Clin Endocrinol Metab 2008;93(11_supplement_1):s74–s80. doi:10.1210/jc.2008-1399.
  • Garland DE. A clinical perspective on common forms of acquired heterotopic ossification. Clin Orthop Relat Res 1991;263(263):13–29.
  • Mollan RA. Serum alkaline phosphatase in heterotopic para-articular ossification after total hip replacement. J Bone Joint Surg Br 1979;61-B(4):432–434.
  • Orzel JA, Rudd TG. Heterotopic bone formation: clinical, laboratory, and imaging correlation. J Nucl Med 1985;26(2):125–132.
  • Kjaersgaard-Andersen P, Pedersen P, Kristensen SS, Schmidt SA, Pedersen NW. Serum alkaline phosphatase as an indicator of heterotopic bone formation following total hip arthroplasty. Clin Orthop Relat Res 1988;234(234):102–109.
  • Wilkinson JM, Stockley I, Hamer AJ, Barrington NA, Eastell R. Biochemical markers of bone turnover and development of heterotopic ossification after total hip arthroplasty. J Orthop Res 2003;21(3):529–534. doi:S073602660200236X [pii].
  • Shapiro JR, Lewiecki EM. Hypophosphatasia in adults: clinical assessment and treatment considerations. J Bone Miner Res 2017;32(10):1977–1980. doi:10.1002/jbmr.3226.
  • Szulc P, Bauer DC. Chapter 67 – biochemical markers of bone turnover in osteoporosis. In: Marcus R, Feldman D, Dempster DW, Luckey M, Cauley JA, (eds.) Osteoporosis (4th ed.). San Diego: Academic Press; 2013. p. 1573–1610.
  • Swaminathan R. Biochemical markers of bone turnover. Clin Chim Acta 2001 Nov;313(1-2):95–105. doi:10.1016/s0009-8981(01)00656-8.
  • Golub EE, Boesze-Battaglia K. The role of alkaline phosphatase in mineralization. Curr Opin Orthop 2007;18(5):444–448. doi:10.1097/BCO.0b013e3282630851.
  • Brown JP, Albert C, Nassar BA, Adachi JD, Cole D, Davison KS, et al. Bone turnover markers in the management of postmenopausal osteoporosis. Clin Biochem 2009;42(10):929–942. doi:10.1016/j.clinbiochem.2009.04.001.
  • Ross PD, Kress BC, Parson RE, Wasnich RD, Armour KA, Mizrahi IA. Serum bone alkaline phosphatase and calcaneus bone density predict fractures: A prospective study. Osteoporos Int 2000;11(1):76–82. doi:10.1007/s001980050009.
  • Garnero P, Hausherr E, Chapuy MC, Marcelli C, Grandjean H, Muller C, et al. Markers of bone resorption predict hip fracture in elderly women: The EPIDOS prospective study. J Bone Miner Res 1996;11(10):1531–1538. doi:10.1002/jbmr.5650111021.
  • Garnero P, Dargent-Molina P, Hans D, Schott AM, Bréart G, Meunier PJ, Delmas PD. Do markers of bone resorption add to bone mineral density and ultrasonographic heel measurement for the prediction of hip fracture in elderly women? The EPIDOS prospective study. Osteoporos Int 1998;8(6):563–569. doi:10.1007/s001980050100.
  • Peters M, Godfrey C, McInerney P, Munn Z, Tricco AC, Khalil H. Chapter 11: scoping reviews (2020 version). In: Aromataris E, Munn Z, (eds.) JBI manual for evidence synthesis. JBI; 2020. Available from https://synthesismanual.jbi.global. https://doi.org/10.46658/JBIMES-20-01
  • Tricco AC, Lillie E, Zarin W, O'Brien KK, Colquhoun H, Levac D, et al. PRISMA extension for scoping reviews (PRISMA-ScR): checklist and explanation. Ann Intern Med 2018 Oct 2;169(7):467–473. doi:10.7326/M18-0850.
  • Lockwood C, Tricco AC. Preparing scoping reviews for publication using methodological guides and reporting standards. Nurs Health Sci 2020;22(1):1–4. doi:10.1111/nhs.12673.
  • University of Florida Health. Traumatic injury – overview [Web document]. [cited September 30, 2020]. Available from https://ufhealth.org/traumatic-injury.
  • Alavizadeh SA, Mohajeri-Tehrani MR, Rostamian A, Aghaei Meybodi HR, Qorbani M, Keshtkar AA, et al. Prevalence and associated factors of T-score discordance between different sites in Iranian patients with spinal cord injury. Spinal Cord 2014;52(4):322–326. doi:10.1038/sc.2013.143.
  • Bauman WA, Emmons RR, Cirnigliaro CM, Kirshblum SC, Spungen AM. An effective oral vitamin D replacement therapy in persons with spinal cord injury. J Spinal Cord Med 2011;34(5):455–460. doi:10.1179/2045772311Y.0000000032.
  • Bauman WA, Zhong YG, Schwartz E. Vitamin D deficiency in veterans with chronic spinal cord injury. Metabolism 1995;44(12):1612–1616. doi:0026-0495(95)90083-7 [pii].
  • Bergmann P, Heilporn A, Schoutens A, Paternot J, Tricot A. Longitudinal study of calcium and bone metabolism in paraplegic patients. Paraplegia 1977;15(2):147–159. doi:10.1038/sc.1977.20.
  • Bloomfield SA, Mysiw WJ, Jackson RD. Bone mass and endocrine adaptations to training in spinal cord injured individuals. Bone 1996;19(1):61–68. doi:8756328296001093 [pii].
  • Broholm B, Pødenphant J, Biering-Sørensen F. The course of bone mineral density and biochemical markers of bone turnover in early postmenopausal spinal cord-lesioned females. Spinal Cord 2005;43(11):674–677. doi:3101788 [pii].
  • Carvalho DC, Garlipp CR, Bottini PV, Afaz SH, Moda MA, Cliquet A, Jr. Effect of treadmill gait on bone markers and bone mineral density of quadriplegic subjects. Braz J Med Biol Res 2006;39(10):1357–1363. doi:S0100-879X2006001000012 [pii].
  • Demirel G, Yilmaz H, Paker N, Onel S. Osteoporosis after spinal cord injury. Spinal Cord 1998;36(12):822–825. doi:10.1038/sj.sc.3100704.
  • Edwards WB, Simonian N, Haider IT, Anschel AS, Chen D, Gordon KE, et al. Effects of teriparatide and vibration on bone mass and bone strength in people with bone loss and spinal cord injury: A randomized, controlled trial. J Bone Miner Res 2018;33(10):1729–1740. doi:10.1002/jbmr.3525.
  • Finsen V, Indredavik B, Fougner KJ. Bone mineral and hormone status in paraplegics. Paraplegia 1992;30(5):343–347. doi:10.1038/sc.1992.80.
  • Gifre L, Ruiz-Gaspà S, Carrasco JL, Portell E, Vidal J, Muxi A, et al. Effect of recent spinal cord injury on the OPG/RANKL system and its relationship with bone loss and the response to denosumab therapy. Osteoporos Int 2017;28(9):2707–2715. doi:10.1007/s00198-017-4090-4.
  • Gifre L, Vidal J, Carrasco JL, Filella X, Ruiz-Gaspà S, Muxi A, et al. Effect of recent spinal cord injury on wnt signaling antagonists (sclerostin and dkk-1) and their relationship with bone loss. A 12-month prospective study. J Bone Miner Res 2015;30(6):1014–1021. doi:10.1002/jbmr.2423.
  • Gifre L, Vidal J, Carrasco JL, Muxi A, Portell E, Monegal A, et al. Risk factors for the development of osteoporosis after spinal cord injury. A 12-month follow-up study. Osteoporos Int 2015;26(9):2273–2280. doi:10.1007/s00198-015-3150-x.
  • Gifre L, Vidal J, Carrasco JL, Muxi A, Portell E, Monegal A, et al. Denosumab increases sublesional bone mass in osteoporotic individuals with recent spinal cord injury. Osteoporos Int 2016;27(1):405–410. doi:10.1007/s00198-015-3333-5.
  • Gifre L, Vidal J, Ruiz-Gaspà S, Portell E, Monegal A, Muxi A, et al. Efecto de la lesión medular motora completa reciente en el recambio óseo y en la evolución de la masa ósea: resultados preliminares. Rev Osteoporos Metab Miner 2014;6(4):97–102.
  • Gaspar AP, Brandão CM, Lazaretti-Castro M. Bone mass and hormone analysis in patients with spinal cord injury: evidence for a gonadal axis disruption. J Clin Endocrinol Metab 2014;99(12):4649–4655. doi:10.1210/jc.2014-2165.
  • Gilchrist NL, Frampton CM, Acland RH, Nicholls MG, March RL, Maguire P, et al. Alendronate prevents bone loss in patients with acute spinal cord injury: A randomized, double-blind, placebo-controlled study. J Clin Endocrinol Metab 2007;92(4):1385–1390. doi:jc.2006-2013 [pii].
  • Gordon KE, Wald MJ, Schnitzer TJ. Effect of parathyroid hormone combined with gait training on bone density and bone architecture in people with chronic spinal cord injury. PMR 2013;5(8):663–671. doi:S1934-1482(13)00161-5 [pii].
  • Hatefi M, Ahmadi MRH, Rahmani A, Dastjerdi MM, Asadollahi K. Effects of curcumin on bone loss and biochemical markers of bone turnover in patients with spinal cord injury. World Neurosurg 2018;114:e785–e791. doi:S1878-8750(18)30559-X [pii].
  • Johnston TE, Marino RJ, Oleson CV, Schmidt-Read M, Leiby BE, Sendecki J, et al. Musculoskeletal effects of 2 functional electrical stimulation cycling paradigms conducted at different cadences for people with spinal cord injury: A pilot study. Arch Phys Med Rehabil 2016;97(9):1413–1422. doi:S0003-9993(15)01483-5 [pii].
  • Jones LM, Legge M. Biochemical markers of bone activity in active and sedentary spinal cord injured men. NZ J Med Lab Science 2009;63:40–43.
  • Kannisto M, Alaranta H, Merikanto J, Kröger H, Kärkkäinen J. Bone mineral status after pediatric spinal cord injury. Spinal Cord 1998;36(9):641–646. doi:10.1038/sj.sc.3100665.
  • Karapolat I, Karapolat HU, Kirazli Y, Capaci K, Akkoc Y, Kumanlioglu K. Longitudinal study of bone loss in chronic spinal cord injury patients. J Phys Ther Sci 2015;27(5):1429–1433. doi:10.1589/jpts.27.1429.
  • Kaya K, Aybay C, Ozel S, Kutay N, Gokkaya O. Evaluation of bone mineral density in patients with spinal cord injury. J Spinal Cord Med 2006;29(4):396–401. doi:10.1080/10790268.2006.11753888.
  • Klein L, Van Den Noort S, DeJak JJ. Sequential studies of urinary hydroxyproline and serum alkaline phosphatase in acute paraplegia. Med Serv J Can 1966;22(7):524–533.
  • Kostovski E, Hjeltnes N, Eriksen EF, Kolset SO, Iversen PO. Differences in bone mineral density, markers of bone turnover and extracellular matrix and daily life muscular activity among patients with recent motor-incomplete versus motor-complete spinal cord injury. Calcif Tissue Int 2015;96(2):145–154. doi:10.1007/s00223-014-9947-3.
  • Maïmoun L, Couret I, Mariano-Goulart D, Dupuy AM, Micallef JP, Peruchon E, et al. Changes in osteoprotegerin/RANKL system, bone mineral density, and bone biochemicals markers in patients with recent spinal cord injury. Calcif Tissue Int 2005;76(6):404–411. doi:10.1007/s00223-004-0048-6.
  • Maïmoun L, Lumbroso S, Paris F, Couret I, Peruchon E, Rouays-Mabit E, et al. The role of androgens or growth factors in the bone resorption process in recent spinal cord injured patients: A cross-sectional study. Spinal Cord 2006;44(12):791–797. doi:3101922 [pii].
  • Maïmoun L, Couret I, Micallef JP, Peruchon E, Mariano-Goulart D, Rossi M, et al. Use of bone biochemical markers with dual-energy x-ray absorptiometry for early determination of bone loss in persons with spinal cord injury. Metabolism 2002;51(8):958–963. doi:S0026049502000264 [pii].
  • Pedrera JD, Mañas P, Gómez MA, Canal ML, Lavado JM, Hernández ER, Rico H. Ultrasound bone mass in paraplegic patients. Spinal Cord 2002;40(2):83–87. doi:10.1038/sj.sc.3101256.
  • Minaire P, Berard E, Meunier PJ, Edouard C, Goedert G, Pilonchery G. Effects of disodium dichloromethylene diphosphonate on bone loss in paraplegic patients. J Clin Invest 1981;68(4):1086–1092. doi:10.1172/jci110331.
  • Paker N, Bugdayci D, Ersoy S, Uysal E, Elbirlik S. Bone loss and bone turnover in acute and chronic spinal cord injured patients. Neurosciences (Riyadh) 2007;12(3):232–235.
  • Reiter A, Reiter A, Volk A, Volk A, Vollmar J, Vollmar J, et al. Changes of basic bone turnover parameters in short-term and long-term patients with spinal cord injury. Eur Spine J 2007;16(6):771–776. doi:10.1007/s00586-006-0163-3.
  • Roberts D, Lee W, Cuneo RC, Wittmann J, Ward G, Flatman R, et al. Longitudinal study of bone turnover after acute spinal cord injury. J Clin Endocrinol Metab 1998;83(2):415–422. doi:10.1210/jcem.83.2.4581.
  • Sabour H, Norouzi Javidan A, Latifi S, Larijani B, Shidfar F, Vafa MR, et al. Bone biomarkers in patients with chronic traumatic spinal cord injury. Spine J 2014;14(7):1132–1138. doi:S1529-9430(13)01397-1 [pii].
  • Sabour H, Norouzi Javidan A, Latifi S, Hadian MR, Emami Razavi SH, Shidfar F, et al. Is lipid profile associated with bone mineral density and bone formation in subjects with spinal cord injury? J Osteoporos 2014;2014:1–6. doi:10.1155/2014/695014.
  • Schnitzer TJ, Kim K, Marks J, Yeasted R, Simonian N, Chen D. Zoledronic acid treatment after acute spinal cord injury: results of a randomized, placebo-controlled pilot trial. PMR 2016;8(9):833–843. doi:S1934-1482(16)00045-9 [pii].
  • Shapiro J, Smith B, Beck T, Ballard P, Dapthary M, BrintzenhofeSzoc K, Caminis J. Treatment with zoledronic acid ameliorates negative geometric changes in the proximal femur following acute spinal cord injury. Calcif Tissue Int 2007;80(5):316–322. doi:10.1007/s00223-007-9012-6.
  • Singh R, Rohilla RK, Saini G, Magu NK, Kaur K. Bone mineral density and biochemical markers of bone turnover during the first year of injury in patients with spinal cord injury. J Orthop Trauma Rehabil 2014;18(1):2–6. doi:10.1016/j.jotr.2013.12.006.
  • Zehnder Y, Risi S, Michel D, Knecht H, Perrelet R, Kraenzlin M, et al. Prevention of bone loss in paraplegics over 2 years with alendronate. J Bone Miner Res 2004;19(7):1067–1074. doi:10.1359/JBMR.040313.
  • Ding WG, Jiang SD, Zhang YH, Jiang LS, Dai LY. Bone loss and impaired fracture healing in spinal cord injured mice. Osteoporos Int 2011;22(2):507–515. doi:10.1007/s00198-010-1256-8.
  • Jiang SD, Jiang LS, Dai LY. Effects of spinal cord injury on osteoblastogenesis, osteoclastogenesis and gene expression profiling in osteoblasts in young rats. Osteoporos Int 2007;18(3):339–349. doi:10.1007/s00198-006-0229-4.
  • Jiang SD, Jiang LS, Dai LY. Changes in bone mass, bone structure, bone biomechanical properties, and bone metabolism after spinal cord injury: a 6-month longitudinal study in growing rats. Calcif Tissue Int 2007;80(3):167–175. doi:10.1007/s00223-006-0085-4.
  • Jiang SD, Yang YH, Chen JW, Jiang LS. Isolated osteoblasts from spinal cord-injured rats respond less to mechanical loading as compared with those from hindlimb-immobilized rats. J Spinal Cord Med 2013;36(3):220–224. doi:10.1179/2045772312Y.0000000071.
  • Li Z, Kai LS, Zhao YC. Changes in bone metabolism in early stage following spinal cord injury in guinea pig: value of related biochemical indices in risk assessment for osteoporosis. Chinese J Clin Rehabil 2005;9(41):157–159.
  • Li YZ, Yang YG, Yu YB, Liu ZJ, Xu CH, Cui L. Experimental study of secondary osteoporosis of spinal cord injured rats. Chinese J Clin Rehabil 2005;9(43):172–174.
  • Liu M, Chen H, Tong M, Zhou J, Wu X. Effects of ultra-early hyperbaric oxygen therapy on femoral calcitonin gene-related peptide and bone metabolism of rats with complete spinal transection. Spine 2018;43(16):E919–E926. doi:10.1097/BRS.0000000000002581.
  • Manjhi J, Kumar S, Behari J, Mathur R. Effect of extremely low frequency magnetic field in prevention of spinal cord injury-induced osteoporosis. J Rehabil Res Dev 2013;50(1):17–30. doi:10.1682/jrrd.2011.12.0248.
  • Minematsu A, Nishii Y, Imagita H, Takeshita D, Sakata S. Whole-body vibration can attenuate the deterioration of bone mass and trabecular bone microstructure in rats with spinal cord injury. Spinal Cord 2016;54(8):597–603. doi:10.1038/sc.2015.220.
  • Schoutens A, Verhas M, Dourov N, Bergmann P, Caulin F, Verschaeren A, et al. Bone loss and bone blood flow in paraplegic rats treated with calcitonin, diphosphonate, and indomethacin. Calcif Tissue Int 1988;42(2):136–143. doi:10.1007/BF02556346.
  • Yang X, He B, Liu P, Yan L, Yang M, Li D. Treatment with curcumin alleviates sublesional bone loss following spinal cord injury in rats. Eur J Pharmacol 2015;765:209–216. doi:S0014-2999(15)30211-9 [pii].
  • D'Amelio P, Tamone C, Sassi F, D'Amico L, Roato I, Patanè S, et al. Teriparatide increases the maturation of circulating osteoblast precursors. Osteoporos Int 2012;23(4):1245–1253. doi:10.1007/s00198-011-1666-2.
  • Dobnig H, Sipos A, Jiang Y, Fahrleitner-Pammer A, Ste-Marie L, Gallagher JC, et al. Early changes in biochemical markers of bone formation correlate with improvements in bone structure during teriparatide therapy. J Clin Endocrinol Metab 2005;90(7):3970–3977. doi:10.1210/jc.2003-1703.
  • Nishikawa A, Ishida T, Taketsuna M, Yoshiki F, Enomoto H. Safety and effectiveness of daily teriparatide in a prospective observational study in patients with osteoporosis at high risk of fracture in Japan: final report. Clin Interv Aging 2016;11:913–925. doi:10.2147/CIA.S107285.
  • Hu ZB, Wei B, Wu SK, Sun JC, Xiang M, Zhang ZM. Changes in bone mineral density and bone metabolic indexes in ankylosing spondylitis mouse model complicated with osteoporosis. Exp Ther Med 2018;16(2):811–815. doi:10.3892/etm.2018.6220.
  • Wang X, Liang T, Zhu Y, Qiu J, Qiu X, Lian C, et al. Melatonin prevents bone destruction in mice with retinoic acid–induced osteoporosis. Mol Med 2019;25(1):43. doi:10.1186/s10020-019-0107-0.
  • Kim SH, Moon KY. Inhibitory effect of retinoids on alkaline phosphatase isoenzymes activity in human serum. Biomed Sci Lett 2017;23:230–237.
  • Al Hadi H, Smerdon GR, Fox SW. Hyperbaric oxygen therapy accelerates osteoblast differentiation and promotes bone formation. J Dent 2015;43(3):382–388. doi:10.1016/j.jdent.2014.10.006.
  • Yamaguchi-Sekino S, Kira T, Sekino M, Akahane M. Effects of 7 T static magnetic fields on the expression of biological markers and the formation of bone in rats. Bioelectromagnetics 2019;40(1):16–26. doi:10.1002/bem.22161.
  • Pal A, Kumar S, Jain S, Nag TC, Mathur R. Neuroregenerative effects of electromagnetic field and magnetic nanoparticles on spinal cord injury in rats. J Nanosci Nanotechnol 2018;18(10):6756–6764. doi:10.1166/jnn.2018.15820.
  • Minematsu A, Nishii Y, Imagita H, Sakata S. Possible effects of whole body vibration on bone properties in growing rats. Osteoporos Sarcopenia 2019;5(3):78–83. doi:10.1016/j.afos.2019.07.001.
  • Gu Q, Cai Y, Huang C, Shi Q, Yang H. Curcumin increases rat mesenchymal stem cell osteoblast differentiation but inhibits adipocyte differentiation. Pharmacogn Mag 2012;8(31):202–208. doi:10.4103/0973-1296.99285.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.