41
Views
2
CrossRef citations to date
0
Altmetric
Articles

Optimization of Informative Spectral Regions in FT-NIR Spectroscopy for Measuring the Soluble Solids Content of Apple

, , , &

References

  • BrownP. J. (1992). Wavelength selection in multicomponent near-infrared calibration. Journal of Chemometrics, 6, 151–161. doi:10.1002/cem.1180060306.
  • BureauS., RuizD., ReichM., GoubleB., BertrandD., AudergonJ., & RenardC. M. (2009). Rapid and non-destructive analysis of apricot fruit quality using FT-near-infrared spectroscopy. Food Chemistry, 113, 1323–1328. doi:10.1016/j.foodchem.2008.08.066.
  • CarlomagnoG., CapozzoL., AttolicoG., & DistanteA. (2004). Non-destructive grading of peaches by near-infrared spectrometry. Infrared Physics & Technology, 46, 23–29. doi:10.1016/j.infrared.2004.03.004.
  • DuY., LiangY., JiangJ., BerryR., & OzakiY. (2004). Spectral regions selection to improve prediction ability of PLS models by changeable size moving window partial least squares and searching combination moving window partial least squares. Analytica Chimica Acta, 501, 183–191. doi:10.1016/j.aca.2003.09.041.
  • DurandA., DevosO., RuckebuschC., & HuvenneJ. (2007). Genetic algorithm optimisation combined with partial least squares regression and mutual information variable selection procedures in near-infrared quantitative analysis of cotton–viscose textiles. Analytica Chimica Acta, 595, 72–79. doi:10.1016/j.aca.2007.03.024.
  • FearnT. (2002). Discriminant analysis. In J. M.Chalmers & P. R.Griffiths (Eds.), Handbook of vibrational spectroscopy (pp. 2086–2093). Chichester: Wiley.
  • PiernaJ. A., AbbasO., BaetenV., & DardenneP. (2009). A backward variable selection method for PLS regression (BVSPLS). Analytica Chimica Acta, 642, 89–93. doi:10.1016/j.aca.2008.12.002.
  • GoicoecheaH., & OlivieriA. (2002). Wavelength selection for multivariate calibration using a genetic algorithm: A novel initialization strategy. Analytical Chemistry, 42, 1146–1153.
  • GoldingJ., SatyanS., LiebenbergC., WalshK., & McGlassonW. (2006). Application of portable NIR for measuring soluble solids content rations in peaches. Acta Horticulturae, 713, 461–464.
  • GómezA., HeY., & PereiraA. (2006). Non-destructive measurement of acidity, soluble solids and firmness of Satsuma mandarin using Vis/NIR-spectroscopy techniques. Journal of Food Engineering, 77, 313–319.
  • HanD., & WangJ. (2008). Review of nondestructive measurement of fruit quality by means of near infrared spectroscopy. Chinese Journal of Lasers, 35, 1123–1131. doi:10.3788/CJL20083508.1123.
  • HuangL., HeD., & YangS. X. (2013). Segmentation on ripe fuji apple with fuzzy 2D entropy based on 2D histogram and GA optimization. Intelligent Automation & Soft Computing, 19, 239–251. doi:10.1080/10798587.2013.823755.
  • LammertynJ., NicolaïB., OomsK., De SmedtV., & De BaerdemaekerJ. (1998). Non-destructive measurement of acidity, soluble solids, and firmness of Jonagold apples using NIR-spectroscopy. Transactions of the ASAE, 41, 1089–1094. doi:10.13031/2013.17238.
  • JhaS. N., JaiswalP., NarsaiahK., GuptaM., BhardwajR., & SinghA. K. (2012). Non-destructive prediction of sweetness of intact mango using near infrared spectroscopy. Scientia Horticulturae, 138, 171–175. doi:10.1016/j.scienta.2012.02.031.
  • JiangJ., BerryR. J., SieslerH. W., & OzakiY. (2002). Wavelength interval selection in multicomponent spectral analysis by moving window partial least-squares regression with applications to mid-infrared and near-infrared spectroscopic data. Analytical Chemistry, 74, 3555–3565. doi:10.1021/ac011177u.
  • KleynenO., LeemansV., & DestainM. (2003). Selection of the most efficient wavelength bands for ‘Jonagold’ apple sorting. Postharvest Biology and Technology, 30, 221–232. doi:10.1016/S0925-5214(03)00112-1.
  • LeardiR., & GonzálezA. (1998). Genetic algorithms applied to feature selection in PLS regression: How and when to use them. Chemometrics and Intelligent Laboratory Systems, 41, 195–207. doi:10.1016/S0169-7439(98)00051-3.
  • LiJ., HuangW., ZhaoC., & ZhangB. (2013). A comparative study for the quantitative determination of soluble solids content, pH and firmness of pears by Vis/NIR spectroscopy. Journal of Food Engineering, 116, 324–332. doi:10.1016/j.jfoodeng.2012.11.007.
  • LiaoQ., HuangY., HeS., XieR., LvQ., YiS., & … QianC. (2013). Cluster analysis of citrus genotypes using near-infrared spectroscopy. Intelligent Automation & Soft Computing, 19, 347–359. doi:10.1080/10798587.2013.824719.
  • LiuF., JiangY., & HeY. (2009). Variable selection in visible/near infrared spectra for linear and nonlinear calibrations: A case study to determine soluble solids content of beer. Analytica Chimica Acta, 635, 45–52. doi:10.1016/j.aca.2009.01.017.
  • LiuY., YingY., YuH., & FuX. (2006). Comparison of the HPLC method and FT-NIR analysis for quantification of glucose, fructose, and sucrose in intact apple fruits. Journal of Agricultural and Food Chemistry, 54, 2810–2815. doi:10.1021/jf052889e.
  • LucasiusC., & KatemanG. (1991). Genetic algorithms for large-scale optimization in chemometrics: An application. TrAC Trends in Analytical Chemistry, 10, 254–261. doi:10.1016/0165-9936(91)85132-B.
  • MagwazaL. S., OparaU. L., NieuwoudtH., CronjeP. J. R., SaeysW., & NicolaïB. (2012). NIR spectroscopy applications for internal and external quality analysis of citrus fruit—a review. Food and Bioprocess Technology, 5, 425–444. doi:10.1007/s11947-011-0697-1.
  • MendozaF., LuR., & CenH. (2012). Comparison and fusion of four nondestructive sensors for predicting apple fruit firmness and soluble solids content. Postharvest Biology and Technology, 73, 89–98. doi:10.1016/j.postharvbio.2012.05.012.
  • NicolaïB., BeullensK., BobelynE., PeirsA., SaeysW., TheronK., & LammertynJ. (2007). Nondestructive measurement of fruit and vegetable quality by means of NIR spectroscopy: A review. Postharvest Biology and Technology, 46, 99–118.
  • NicolaïB., VerlindenB., DesmetM., SaevelsS., SaeysW., TheronK., & … TorricelliA. (2008). Time-resolved and continuous wave NIR reflectance spectroscopy to predict soluble solids content and firmness of pear. Postharvest Biology and Technology, 47, 68–74.
  • NørgaardL., SaudlandA., WagnerJ., NielsenJ., MunckL., & EngelsenS. (2000). Interval partial least squares regression (iPLS): A comparative chemometric study with an example from near-infrared spectroscopy. Applied Spectroscopy, 54, 413–419.
  • OsborneB., & FearnT. (1988). Near infrared spectroscopy in food analysis. New Jersey, USA: John Wiley & Sons.
  • OzakiY., McClureW., & ChristyA. (2006). Near-infrared spectroscopy in food and technology. New Jersey: John Wiley & Sons.
  • PazP., SánchezM., Pérez-MarínD., GuerreroJ. E., & Garrido-VaroA. (2009). Instantaneous quantitative and qualitative assessment of pear quality using near infrared spectroscopy. Computers and Electronics in Agriculture, 69, 24–32. doi:10.1016/j.compag.2009.06.008.
  • PeirsA., LammertynJ., OomsK., & NicolaıB. M. (2001). Prediction of the optimal picking date of different apple cultivars by means of VIS/NIR-spectroscopy. Postharvest Biology and Technology, 21, 189–199. doi:10.1016/S0925-5214(00)00145-9.
  • Pérez-MarínD., SánchezM., PazP., SorianoM., GuerreroJ., & Garrido-VaroA. (2009). Non-destructive determination of quality parameters in nectarines during on-tree ripening and postharvest storage. Postharvest Biology and Technology, 52, 180–188.
  • PiF., ShinzawaH., WangJ., HanD., & OzakiY. (2009). Partial least square regression with variable-bagged model ensemble. Journal of Near Infrared Spectroscopy, 17, 33–40. doi:10.1255/jnirs.824.
  • SaranwongS., SornsrivichaiJ., & KawanoS. (2001). Improvement of PLS calibration for Brix value and dry matter of mango using information from MLR calibration. Journal of Near Infrared Spectroscopy, 9, 287–295. doi:10.1255/jnirs.314.
  • SchaareP., & FraserD. (2000). Comparison of reflectance, interactance and transmission modes of visible-near infrared spectroscopy for measuring internal properties of kiwifruit (Actinidia chinensis). Postharvest Biology and Technology, 20, 175–184. doi:10.1016/S0925-5214(00)00130-7.
  • SpiegelmanC. H., McShaneM. J., GoetzM. J., MotamediM., YueQ. L., & CotéG. L. (1998). Theoretical justification of wavelength selection in PLS calibration: Development of a new algorithm. Analytical Chemistry, 70, 35–44. doi:10.1021/ac9705733.
  • SubediP., WalshK., & OwensG. (2007). Prediction of mango eating quality at harvest using short-wave near infrared spectrometry. Postharvest Biology and Technology, 43, 326–334. doi:10.1016/j.postharvbio.2006.09.012.
  • WangJ., & HanD. (2008). Analysis of near infrared spectra of apple SSC by genetic algorithm optimization. Spectroscopy and Spectral Analysis, 28, 2308–2311.
  • WilliamsP., & NorrisK. (1987). Near-infrared technology in the agricultural and food industries. St Paul, USA: American Association of Cereal Chemists.
  • XiaoboZ, JiewenZ, XingyiH, & YanxiaoL (2007). Use of FT-NIR spectrometry in non-invasive measurements of soluble solid contents (SSC) of ‘Fuji’ apple based on different PLS models. Chemometrics and Intelligent Laboratory Systems, 87, 43–51. doi:10.1016/j.chemolab.2006.09.003.
  • XuL., & SchechterI. (1996). Optimization method for simultaneous kinetic analysis. Analytical Chemistry, 68, 1842–1850. doi:10.1021/ac951061w.
  • Yi-ZengL, Yu-LongX, & Ru-QinY (1989). Accuracy criteria and optimal wavelength selection for multicomponent spectrophotometric determinations. Analytica Chimica Acta, 222, 347–357. doi:10.1016/S0003-2670(00)81909-1.
  • YingY., & LiuY. (2008). Nondestructive measurement of internal quality in pear using genetic algorithms and FT-NIR spectroscopy. Journal of Food Engineering, 84, 206–213. doi:10.1016/j.jfoodeng.2007.05.012.
  • ZhangL., XuH., & GuM. (2014). Use of signal to noise ratio and area change rate of spectra to evaluate the Visible/NIR spectral system for fruit internal quality detection. Journal of Food Engineering, 139, 19–23. doi:10.1016/j.jfoodeng.2014.04.009.
  • ZhuD., JiB., MengC., ShiB., TuZ., & QingZ. (2007). The performance of ν-support vector regression on determination of soluble solids content of apple by acousto-optic tunable filter near-infrared spectroscopy. Analytica Chimica Acta, 598, 227–234. doi:10.1016/j.aca.2007.07.047.
  • ZudeM., HeroldB., RogerJ., Bellon-MaurelV., & LandahlS. (2006). Non-destructive tests on the prediction of apple fruit flesh firmness and soluble solids content on tree and in shelf life. Journal of Food Engineering, 77, 254–260. doi:10.1016/j.jfoodeng.2005.06.027.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.