102
Views
5
CrossRef citations to date
0
Altmetric
Research Article

Functional Coupling of the Gαolf Variant XLGαolf with the Human Adenosine A2A Receptor

&
Pages 241-258 | Published online: 10 Oct 2008

REFERENCES

  • Moreau J L, Huber G. Central adenosine A(2A) receptors: An overview. Brain Res Rev 1999; 31: 65–82, [INFOTRIEVE], [CSA]
  • Sullivan G W. Adenosine A2A receptor agonists as anti-inflammatory agents. Curr Opin Investig Drugs 2003; 4: 1313–1319, [INFOTRIEVE], [CSA]
  • Klotz K N, Hessling J, Hegler J, Owman C, Kull B, Fredholm B B, Lohse M J. Comparative pharmacology of human adenosine receptor subtypes—Characterization of stably transfected receptors in CHO cells. Naunyn Schmiedebergs Arch Pharmacol 1998; 357: 1–9, [INFOTRIEVE], [CSA], [CROSSREF]
  • Tang Y, Luo J, Fleming C R, Kong Y, Olini G C, Jr, Wildey M J, Cavender D E, Demarest K T. Development of a sensitive and HTS-compatible reporter gene assay for functional analysis of human adenosine A2a receptors in CHO-K1 cells. Assay Drug Dev Technol 2004; 2: 281–289, [INFOTRIEVE], [CSA], [CROSSREF]
  • Corvol J C, Studler J M, Schonn J S, Girault J A, Herve D. Galpha(olf) is necessary for coupling D1 and A2a receptors to adenylyl cyclase in the striatum. J Neurochem 2001; 76: 1585–1588, [INFOTRIEVE], [CSA], [CROSSREF]
  • Belluscio L, Gold G H, Nemes A, Axel R. Mice deficient in G(olf) are anosmic. Neuron 1998; 20: 69–81, [INFOTRIEVE], [CSA], [CROSSREF]
  • Herve D, Le Moine C, Corvol J C, Belluscio L, Ledent C, Fienberg A A, Jaber M, Studler J M, Girault J A. Galpha(olf) levels are regulated by receptor usage and control dopamine and adenosine action in the striatum. J Neurosci 2001; 21: 4390–4399, [INFOTRIEVE], [CSA]
  • Zhuang X, Belluscio L, Hen R. G(olf)alpha mediates dopamine D1 receptor signaling. J Neurosci 2000; 20: RC91, [INFOTRIEVE], [CSA]
  • Berrettini W H, Ferraro T N, Goldin L R, Weeks D E, Detera-Wadleigh S, Nurnberger J I, Jr., Gershon E S. Chromosome 18 DNA markers and manic-depressive illness: Evidence for a susceptibility gene. Proc Natl Acad Sci USA 1994; 91: 5918–5921, [INFOTRIEVE], [CSA], [CROSSREF]
  • Schwab S G, Hallmayer J, Lerer B, Albus M, Borrmann M, Honig S, Strauss M, Segman R, Lichtermann D, Knapp M, Trixler M, Maier W, Wildenauer D B. Support for a chromosome 18p locus conferring susceptibility to functional psychoses in families with schizophrenia, by association and linkage analysis. Am J Hum Genet 1998; 63: 1139–1152, [INFOTRIEVE], [CSA], [CROSSREF]
  • Corradi J P, Ravyn V, Robbins A K, Hagan K W, Peters M, Bostwick R, Buono R, Berrettini W, Furlong S. Alternative transcripts and evidence of imprinting of GNAL on 18p11.2. Molecular Psychiatry 2005; 10: 1017–1025, [INFOTRIEVE], [CSA], [CROSSREF]
  • Cheng Y, Prusoff W H. Relationship between the inhibition constant (K1) and the concentration of inhibitor which causes 50 per cent inhibition (I50) of an enzymatic reaction. Biochem Pharmacol 1973; 22: 3099–3108, [INFOTRIEVE], [CSA], [CROSSREF]
  • Robeva A S, Woodard R, Luthin D R, Taylor H E, Linden J. Double tagging recombinant A1- and A2A-adenosine receptors with hexahistidine and the FLAG epitope. Development of an efficient generic protein purification procedure. Biochem Pharmacol 1996; 51: 545–555, [INFOTRIEVE], [CSA], [CROSSREF]
  • Bouvier M, Menard L, Dennis M, Marullo S. Expression and recovery of functional G-protein-coupled receptors using baculovirus expression systems. Curr Opin Biotechnol 1998; 9: 522–527, [INFOTRIEVE], [CSA], [CROSSREF]
  • Rosin D L, Robeva A, Woodard R L, Guyenet P G, Linden J. Immunohistochemical localization of adenosine A2A receptors in the rat central nervous system. J Comp Neurol 1998; 401: 163–186, [INFOTRIEVE], [CSA], [CROSSREF]
  • Piersen C E, True C D, Wells J N. A carboxyl-terminally truncated mutant and nonglycosylated A2a adenosine receptors retain ligand binding. Mol Pharmacol 1994; 45: 861–870, [INFOTRIEVE], [CSA]
  • DeMet E M, Chicz-De Met A. Localization of adenosine A2A-receptors in rat brain with [3H]ZM-241385. Naunyn Schmiedebergs Arch Pharmacol 2002; 366: 478–481, [INFOTRIEVE], [CSA], [CROSSREF]
  • Zocchi C, Ongini E, Ferrara S, Baraldi P G, Dionisotti S. Binding of the radioligand [3H]-SCH 58261, a new non-xanthine A2A adenosine receptor antagonist, to rat striatal membranes. Br J Pharmacol 1996; 117: 1381–1386, [INFOTRIEVE], [CSA]
  • Ongini E, Dionisotti S, Gessi S, Irenius E, Fredholm B B. Comparison of CGS 15943, ZM 241385 and SCH 58261 as antagonists at human adenosine receptors. Naunyn Schmiedebergs Arch Pharmacol 1999; 359: 7–10, [INFOTRIEVE], [CSA], [CROSSREF]
  • Sihver W, Bier D, Holschbach M H, Schulze A, Wutz W, Olsson R A, Coenen H H. Binding of tritiated and radioiodinated ZM241,385 to brain A2A adenosine receptors. Nucl Med Biol 2004; 31: 173–177, [INFOTRIEVE], [CSA], [CROSSREF]
  • Beukers M W, Wanner M J, Von Frijtag Drabbe Kunzel J K, Klaasse E C, AP I J, Koomen G J. N6- cyclopentyl-2-(3-phenylaminocarbonyltriazene-1yl)adenosine (TCPA), a very selective agonist with high affinity for the human adenosine A1 receptor. J Med Chem 2003; 46: 1492–1503, [INFOTRIEVE], [CSA], [CROSSREF]
  • Dionisotti S, Ongini E, Zocchi C, Kull B, Arslan G, Fredholm B B. Characterization of human A2A adenosine receptors with the antagonist radioligand [3H]-SCH 58261. Br J Pharmacol 1997; 121: 353–360, [INFOTRIEVE], [CSA]
  • Gao Z, Li Z, Baker S P, Lasley R D, Meyer S, Elzein E, Palle V, Zablocki J A, Blackburn B, Belardinelli L. Novel short-acting A2A adenosine receptor agonists for coronary vasodilation: inverse relationship between affinity and duration of action of A2A agonists. J Pharmacol Exp Ther 2001; 298: 209–218, [INFOTRIEVE], [CSA]
  • Harvey V, Jones J, Misra A, Knight A R, Quirk K. Solubilisation and immunoprecipitation of rat striatal adenosine A(2A) receptors. Eur J Pharmacol 2001; 431: 171–177, [INFOTRIEVE], [CSA], [CROSSREF]
  • Varani K, Gessi S, Dalpiaz A, Ongini E, Borea P A. Characterization of A2A adenosine receptors in human lymphocyte membranes by [3H]-SCH 58261 binding. Br J Pharmacol 1997; 122: 386–392, [INFOTRIEVE], [CSA], [CROSSREF]
  • Gessi S, Varani K, Merighi S, Ongini E, Borea P A. A(2A) adenosine receptors in human peripheral blood cells. Br J Pharmacol 2000; 129: 2–11, [INFOTRIEVE], [CSA], [CROSSREF]
  • Kull B, Arslan G, Nilsson C, Owman C, Lorenzen A, Schwabe U, Fredholm B B. Differences in the order of potency for agonists but not antagonists at human and rat adenosine A2A receptors. Biochem Pharmacol 1999; 57: 65–75, [INFOTRIEVE], [CSA], [CROSSREF]
  • Fredholm B B, Irenius E, Kull B, Schulte G. Comparison of the potency of adenosine as an agonist at human adenosine receptors expressed in Chinese hamster ovary cells. Biochem Pharmacol 2001; 61: 443–448, [INFOTRIEVE], [CSA], [CROSSREF]
  • Hirschhorn R, Roegner-Maniscalco V, Kuritsky L, Rosen F S. Bone marrow transplantation only partially restores purine metabolites to normal in adenosine deaminase-deficient patients. J Clin Invest 1981; 68: 1387–1393, [INFOTRIEVE], [CSA]
  • Daly J W, Padgett W L, Secunda S I, Thompson R D, Olsson R A. Structure-activity relationships for 2-substituted adenosines at A1 and A2 adenosine receptors. Pharmacology 1993; 46: 91–100, [INFOTRIEVE], [CSA]
  • Gao Z G, Jiang Q, Jacobson K A, IJzerman A P. Site-directed mutagenesis studies of human A(2A) adenosine receptors: Involvement of glu(13) and his(278) in ligand binding and sodium modulation. Biochem Pharmacol 2000; 60: 661–668, [INFOTRIEVE], [CSA], [CROSSREF]
  • Kim J, Jiang Q, Glashofer M, Yehle S, Wess J, Jacobson K A. Glutamate residues in the second extracellular loop of the human A2a adenosine receptor are required for ligand recognition. Mol Pharmacol 1996; 49: 683–691, [INFOTRIEVE], [CSA]
  • Jiang Q, Lee B X, Glashofer M, van Rhee A M, Jacobson K A. Mutagenesis reveals structure-activity parallels between human A2A adenosine receptors and biogenic amine G protein-coupled receptors. J Med Chem 1997; 40: 2588–2595, [INFOTRIEVE], [CSA], [CROSSREF]
  • Murphree L J, Marshall M A, Rieger J M, Macdonald T L, Linden J. Human A(2A) adenosine receptors: High-affinity agonist binding to receptor-G protein complexes containing Gbeta(4). Mol Pharmacol 2002; 61: 455–462, [INFOTRIEVE], [CSA], [CROSSREF]
  • Cohen F R, Lazareno S, Birdsall N J. The effects of saponin on the binding and functional properties of the human adenosine A1 receptor. Br J Pharmacol 1996; 117: 1521–1529, [INFOTRIEVE], [CSA]
  • Ciruela F, Saura C, Canela E I, Mallol J, Lluis C, Franco R. Adenosine deaminase affects ligand-induced signalling by interacting with cell surface adenosine receptors. FEBS Lett 1996; 380: 219–223, [INFOTRIEVE], [CSA], [CROSSREF]
  • Herrera C, Casado V, Ciruela F, Schofield P, Mallol J, Lluis C, Franco R. Adenosine A2B receptors behave as an alternative anchoring protein for cell surface adenosine deaminase in lymphocytes and cultured cells. Mol Pharmacol 2001; 59: 127–134, [INFOTRIEVE], [CSA]
  • Cristalli G, Vittori S, Thompson R D, Padgett W L, Shi D, Daly J W, Olsson R A. Inhibition of platelet aggregation by adenosine receptor agonists. Naunyn Schmiedebergs Arch Pharmacol 1994; 349: 644–650, [INFOTRIEVE], [CSA], [CROSSREF]
  • Daly J W, Padgett W L. Agonist activity of 2- and 5′-substituted adenosine analogs and their N6-cycloalkyl derivatives at A1- and A2-adenosine receptors coupled to adenylate cyclase. Biochem Pharmacol 1992; 43: 1089–1093, [INFOTRIEVE], [CSA], [CROSSREF]
  • van Tilburg E W, Gremmen M, Frijtag Drabbe K J, de Groote M, IJzerman A P. 2, 8-Disubstituted adenosine derivatives as partial agonists for the adenosine A2A receptor. Bioorg Med Chem 2003; 11: 2183–2192, [INFOTRIEVE], [CSA], [CROSSREF]
  • Jasper J R, Lesnick J D, Chang L K, Yamanishi S S, Chang T K, Hsu S A, Daunt D A, Bonhaus D W, Eglen R M. Ligand efficacy and potency at recombinant alpha2 adrenergic receptors: agonist-mediated [35S]GTPgammaS binding. Biochem Pharmacol 1998; 55: 1035–1043, [INFOTRIEVE], [CSA], [CROSSREF]
  • Umland S P, Wan Y, Shah H, Billah M, Egan R W, Hey J A. Receptor reserve analysis of the human alpha(2C)-adrenoceptor using [35S] GTPγS and cAMP functional assays. Eur J Pharmacol 2001; 411: 211–221, [INFOTRIEVE], [CSA], [CROSSREF]

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.