79
Views
15
CrossRef citations to date
0
Altmetric
Review Article

Bioelectronome. Integrated Approach to Receptor Chemistry, Radicals, Electrochemistry, Cell Signaling, and Physiological Effects Based on Electron Transfer

&
Pages 261-294 | Published online: 10 Oct 2008

REFERENCES

  • Kovacic P, Becvar L E. Mode of action of anti-infective agents: Emphasis on oxidative stress and electron transfer. Curr Pharm Des 2000; 6: 143–167
  • Kovacic P, Osuna J A. Mechanisms of anticancer agents: Emphasis on oxidative stress and electron transfer. Curr Pharm Des 2000; 6: 277–309
  • Kovacic P, Jacintho J D. Mechanisms of carcinogenesis: Focus on oxidative stress and electron transfer. Curr Med Chem 2001a; 8: 773–796
  • Kovacic P, Jacintho J D. Reproductive toxins: Pervasive theme of oxidative stress and electron transfer. Curr Med Chem 2001b; 8: 863–892
  • Kovacic P, Sacman A, Wu-Weis M. Nephrotoxins: Widespread role of oxidative stress and electron transfer. Curr Med Chem 2002; 9: 823–847
  • Poli G, Cheeseman G H, Dianzani M U, Slater T F. Free radicals in the pathogenesis of liver injury. Pergamon 1989; 1–330
  • Kovacic P, Thurn L A. Cardiovascular toxins from the perspective of oxidative stress and electron transfer. Curr Vasc Pharmacol 2005; 3: 107–117
  • Kovacic P, Somanathan R. Neurotoxicity: The broad framework of electron transfer, oxidative stress and protection by antioxidants. Curr Med Chem-CNS Agents 2005; 5: 249–258
  • Kovacic P, Pozos R S, Somanathan R, Shangari N, O'Brien P G. Mechanism of mitochondrial uncouplers, inhibitors, and toxins: focus on electron transfer, free radicals, and structure-activity relationships. Curr Med Chem 2005; 5: 2601–2623
  • Kovacic P, Cooksy A L. Unfying mechanism for toxicity and addiction by abused drugs: Electron transfer and reactive oxygen species. Med Hypotheses 2005; 64: 367–366
  • Halliwell B, Gutteridge J MC. Free Radicals in Biology and Medicine. Oxford University Press. 1999; 1–936
  • Cook D L, Patton H D, Fuchs A F, Hille B, Scher A M, Steiner R. The cellular biology of the endocrine system: An overview, in cellular mechanisms in endocrinology. TextBook Physiol 1989; 2: 152
  • Osborne K, Zhao H, Fuqua S AW. Selective estrogen receptor modulators: structure, function and clinical use. J Clin Oncol 2000; 18: 3172–3186
  • Kuiper G G, Enmark E, Pelto-Huikko M, Nilsson S, Gustafsson J A. Cloning of a novel estrogen receptor expressed in rate prostate and ovary. Proc Natl Acad Sci U SA 1996; 93: 5925–5930
  • Mosselman S, Polman J, Kijkema R. Identification and characterization of a novel human estrogen receptor. FEBS Lett 1996; 392: 49–53
  • Shiau A, Barstad D, Loria P, et al. The structural basis of estrogen receptor/coactivator recognition and the antagonism of this interaction by tamoxifen. Cell 1998; 95: 927–937
  • Brzozowski A M, Pike A C, Dauter A, Hubbard R E, Bonn T, Engstrom O, Ohman L, Greene G L, Gustafsson J A, Caelquist M. Molecular basis of agonisms and antagonism in the oestrogen receptor. Nature 1997; 389: 753–758
  • Horwitz K B, Jackson T A, Bain D L, Richer J K, Takimoto G S, Tung L. Nuclear receptor coactivators and corepressors. Mol Endocrinol 1996; 10: 1167–1177
  • Maruyama T, Yoshifumi S, Furuke K, Kitoaka Y, Kanzaki H, Yoshimura Y, Yodoi J. Induction of thirorecosin, a redox-active protein, by ovarian steroid hormones during growth and differentiation of endometrial stromal cells in vitro. Endocrinology 1999; 140: 365–372
  • Wong A, Hwang S M, Cheng H Y, Crooke S T. Structure-activity relationships of B-adrenergic receptor coupled adenylate cyclase: Implactions of a redox mechanism for the action of agonists at the B-adrenergic receptors. Mol Pharmacol 1987; 31: 368–376
  • Sanchez R M, Wang C, Gardner G, Orlando L, Tauck D L, Rosenberg P A, Aizenman E, Jensen F E. Novel role for the NMDA receptor redox modulatory site in the pathophysiology of seizures. J Neurosci 2000; 20: 2409–2417
  • Lukas R J, Bennett E L. Chemical modification and reactivity of sulfhydryls and disulfides of rat brain nicotinic-like acetylcholine receptors. J Biol Chem 1980; 255: 5573–5577
  • Xia Ruohong, Stangler T, Abramson J J. Skeletal muscle ryanodine receptor is a redox sensor with a well defined redox potential that is sensitive to channel modulators. J Biol Chem 2000; 275: 36556–36561
  • Kenakin T. A Pharmacology Primer. Elsevier, Boston 2004; 2–5
  • Gringauz A. Introduction to Medicinal Chemistry. Wiley-VCH, New York 1997; 34
  • Kovacic P. Protein electron transfer (mechanism and reproductive toxicity): iminium, hydrogen bonding, homoconjugation, amino acid side chains and cell signaling. Birth Defects Res Part C 2007; 81: 51–64
  • DeYulia G J, Jr, Carcamo J M, Borquez-Ojeda O, Shelton C C, Golde D W. Hydrogen peroxide generated extracellularly by receptor-ligand interaction facilities cell signaling. Proc Natl Acad Sci U SA 2005; 102: 5044–5049
  • DeYulia G J, Carcamo J M. EGF receptor-ligand interaction generates extracellular hydrogen peroxide that inhibits EGFR-associated protein tyrosine phosphatases. Biochem Biophys Res Commun 2005; 334: 38–42
  • Wedgwood S, Black S M. Endothelin-1 decreases endothelial NOS expression and activity through ETA receptor-mediated generation of hydrogen peroxide. Am J Physiol Lung Cell Mol Physiol 2005; 288: L480–L487
  • Yang Z, Asico L D, Yu P, Wang Z, Jones J E, Escano C S, Wang X, Quinn M T, Sibley D R, Romero G G, Felder R A, Jose P A. D5 dopamine receptor regulation of reactive oxygen species production, NADPH oxidase, and blood pressure. Am J Physiol Regul Integr Comp Physiol 2006; 290: R96–R104
  • Lim S y, Tennant G M, Kennedy S, Wainwright C L, Kane K A. Activation of mouse protease-activated receptor-2 induces lymphocyte adhesion and generation of reactive oxygen species. Br J Pharmacol 2006; 149: 591–599
  • Hao Q, Rutherford S A, Low B, Tang H. Selective regulation of hydrogen peroxide signaling by receptor tyrosine phosphatase-alpha. Free Radic Biol Med 2006; 41: 302–10
  • Lund A K, Peterson S L, Timmins G S, Walker M K. Endothelin-1-mediated increase in reactive oxygen species and NADPH Oxidase activity in hearts of aryl hydrocarbon receptor (AhR) null mice. Toxicol Sci 2005; 88: 265–273
  • Zhou Q, Mend D, Yan B, Jiang B H, Fang J. Transactivation of epidermal growth factor receptor by insulin-like growth factor 1 requires basal hydrogen peroxide. FEBS Lett 2006; 580: 5161–5166
  • Asghar M, Banday A A, Fardoun R Z, Lokhandwala M F. Hydrogen peroxide causes uncoupling of dopamine D1-like receptors from G proteins via a mechanism involving protein kinase C and G-protein-coupled receptor kinase 2. Free Radic Biol Med 2006; 40: 13–20
  • Schmitt T L, Klein H, Droge W. Hydrogen peroxide inhibits activity of the IGF-1 receptor kinase. Redox Rep 2006; 11: 105–109
  • Bai X C, Lu D, Liu A L, Zhang Z M, Li X M, Zou Z P, Zeng W S, Cheng B L, Luo S Q. Reactive oxygen species stimulates receptor activator of NF-kappaB ligand expression in osteoblast. J Biol Chem 2005; 280: 17497–17506
  • von Montfort C, Fernau N S, Beier J I, Sies H, Klotz L O. Extracellular generation of hydrogen peroxide is responsible for activation of EGF receptor by ultraviolet A radiation. Free Radic Bio Med 2006; 41: 1478–1487
  • Chen C H, Cheng T H, Lin H, Shih N L, Chen Y L, Chen Y S, Chen C F, Lian W S, Meng T C, Chiu W T, Chen J J. Reactive oxygen species generation is involved in epidermal growth factor receptor transactivation through the transient oxidization of Src homology 2-containing tyrosine phosphatase in endothelin-1 signaling pathway in rat cardiac fibroblasts. Mol Pharmacol 2006; 69: 1347–1355
  • Wang X, Tong M, Chinta S, Raj Ju, Gao Y. Hypoxia-induced reactive oxygen species downregulate ETB receptor-mediated contraction of rat pulmonary arteries. Am J Physiol Lung Cell Mol Physiol 2006; 290: L570–580
  • Iiyama M, Kakihana K, Kurosu T, Miura O. Reactive oxygen species generated by hematopoietic cytokines play roles in activation of receptor-mediated signaling and in cell cycle progression. Cell Signal 2006; 18: 174–182
  • Lejeune D, Hasanuzzaman M, Pitcock A, Francis J, Sehgal I. The superoxide scavenger TEMPOL induces urokinase receptor (uPAR) expression in human prostate cancer cells. Mol Cancer 2006; 5: 21
  • Bonello M R, Bobryshev Y V, Khachigian L M. Peroxide-inducible Ets-1 mediates platelet-derived growth factor receptor-alpha gene transcription in vascular smooth muscle cells. Am J Pathol 2005; 167: 1149–1159
  • Harfouche R, Malak N A, Brandes R P, Karsan A, Irani K, Hussain S N. Roles of reactive oxygen species in angiopoietin-1/tie-2 receptor signaling. FASEB J 2005; 19: 1728–1730
  • Qin L, Li G, Qian X, Liu Y, Wu X, Liu B, Hong J S, Block M L. Interactive role of the toll-like receptor 4 and reactive oxygen species in LPS-induced microglia activation. Glia 2005; 52: 78–84
  • Madesh M, Hawkins B J, Milovanova T, Bhanumathy C D, Joseph S K, Ramachandrarao S P, Sharma K, Kurosaki T, Fisher A B. Selective role for superoxide in InsP3 receptor-mediated mitochondrial dysfunction and endothelial apoptosis. J Cell Biol 2005; 170: 1079–1090
  • Pines A, Perrone L, Bivi N, Romallo M, Damante G, Gulisano M, Kelley M R, Quadrifoglio F, Tell G. Activation of APE1/Ref-1 is dependent on reactive oxygen species generated after purinergic receptor stimulation by ATP. Nucleic Acids Res 2005; 33: 4379–4394
  • Sureda A, Hebling U, Pons A, Mueller S. Extracellular H2O2 and not superoxide determines the compartment-specific activation of transferrin receptor by iron regulatory protein 1. Free Radic Res 2005; 39: 817–824
  • Mukherjee T K, Mukhopadhyay S, Hoidal J R. The role of reactive oxygen species in TNFalpha-dependent expression of the receptor for advanced glycation end products in human umbilical vein endothelial cells. Biochim Biophys Acta 2005; 1744: 213–223
  • Kim M H, Cho H S, Jung M, Hong M H, Lee S K, Shin B A, Ahn B W, Jung Y D. Extracellular signal-regulated kinase and AP-1 pathways are involved in reactive oxygen species-induced urokinase plasminogen activator receptor expression in human gastric cancer cells. Int J Oncol 2005; 26: 1669–1674
  • Garrett R H, Grisham C M. Biochemistry. Thomson Brooks/Cole, Belmont, CA 1999; S-50
  • Kovacic P, Wakelin L PS. DNA molecular electrostatic potential: novel perspective for the mechanism of action of anticancer drugs involving electron transfer and oxidative stress. Anti-Canc Drug Des 2001; 16: 1–10
  • Kovacic P, Pozos R S. Cell signaling (mechanism and reproductive toxicity): Redox chains, radicals, electrons, relays, conduit, electrochemistry and other medical implications. Birth Defects Res Part C 2006; 78: 333–344
  • Sheriar G H, Mikhail A F, Georgia M, Monyer Hannah, Roberto B. Electrical synapses: A dynamic signaling system that shapes the activity of neuronal networks. Biochim Biophys Acta 2004; 1662: 113–137
  • Hancock G T. Cell Signaling. Oxford University Press, New York 2005; 1–296
  • Oxidative Stress and Signal Transduction, H G Forman, E Cadenas. Chapman and Hall, New York 1997; 1–475
  • Demple B. Oxidative stress and signal transduction. In: Handbook of Cell Singaling 2004; 78: 293–307
  • Hansen J M. Oxidative stress as a mechanism of teratogenesis. Birth Defects Res Part C 2006; 78: 293–307
  • Jones D P. Redifining oxidative stress. Antioxid Redox Signal 2006; 8: 1865–1879
  • Lee N K, Choi Y G, Baik J Y, Han S Y, Jeong D W, Bae Y S, Kim N, Lee S Y. A crucial role for reactive oxygen species in RANKL-induced osteoclast differentiation. Blood 2005; 106: 852–859
  • Miller A A, Drummond G R, Sobey C G. Reactive oxygen species in the cerebral circulation: Are they all bad?. Antioxid Redox Signal 2006; 8: 1113–1120
  • Bunik V I, Scchloss J V, Pinto J T, Gibson G E, Cooper A J. Enzyme-catalyzed side reactions with molecular oxygen may contribute to cell signaling and neurodegenerative diseases. Neurochem Res 2007; 32: 871–891
  • Ling-Zhi Liu, Xiao-Wen Hu, Xia Chang, He Jie, Zhou Qiong, Shi Xianglin, Fang Jing, Jiang Bing Hua. Reactive oxygen species regulate epidermal growth factor-induced vascular endothelial growth factor and hypoxia-inducible factor-1α expression through activation of AKT and P70S6K1 in human ovarian cancer cells. Free Radic Biol Med 2006; 41: 1521–1533
  • Shields J M, Pruitt K, McFall A, Shaub A, Der C J. Understanding Ras: ‘It ain't over til it's over.’. Trends Cell Biol 2000; 10: 147–154
  • Kovacic P. Unifying mechanism for bacterial cell signalers (4,5-dihydroxy-2,3-pentanedione, lactones and oligopeptides): Electron transfer and reactive oxygen species. Practical medical features. Med Hypotheses 2007, in press
  • Kaufmann G F, Sartorio R, Lee S-H, Rogers C J, Meijler M M, Moss J A, Chapmam B, Brogan A P, Dickerson T J, Janda K D. Revisiting quorum sensing: Discovery of additional chemical and biological functions for 3-oxo-n-acylhomoserine lactones. PNAS 2005; 102: 309–314
  • Diggle S P, Matthijs S, Wright V J, Fletcher M P, Chhabra S R, Lamont I L, Kong X, Hider R C, Cornelis P, Camara M, Williams P. The pseudomonas aeruginosa 4-quinolone signal molecules HHQ and PQS play multifunctional roles in quorum sensing and iron entrapment. Chem Biol 2007; 14: 87–96
  • Bredenbruch F, Geffers R, Mimtz M, Buer J, Haussler S. The Pseudomonas aerugenosa quinolone signal (PQS) has an iron-chelating activity. Environ Microbiol 2006, doi:10.1111/j.1462-2920.2006.0125.x
  • Takada T, Barton J K. DNA charge transport leading to disulfide bond formation. J Am Chem Soc 2005; 127: 12204–12205
  • Wan J, Bedham H J, Winn L. The role of c-MYB in benezene-initiated toxicity. Chem Biol Interact 2005; 153–154: 171–178
  • Ruiz-Ramos R, Cebrian M E, Garrido E. Benzoquinone activated the ERK/MAPK signaling pathway via ROS production in HL-60 cells. Toxicology 2005; 209: 279–287
  • Hanzlik R P, Harriman S P, Frauenhoff M M. Covalent binding of benzoquinone to reduced ribonuclease. Adduct structures and stoichiometry. Chem Res Toxicol 1994; 7: 177–184
  • Peng D, Qian C, Sun Y, Barajas M A, Prieto J. Transduction of hepatocellular carcinoma (HCC) using recombinant adeno-associated virus (rAAV): in vitro and in vivo effects of genotoxic agents. J Hepatol 2000; 32: 975–985
  • Moseieniak G, Sliwinska M, Piwocka K, Sikora E. Curcumin abolishes apoptosis resistance of calcitriol-differentiated HL-60 cells. FEBS Lett 2006; 580: 4653–4660
  • Lin J, Hutchinson L, Gaston S M, Raab G, Freeman M R. BAG-1 is a novel cytoplasmic binding partner of the membrane form of heparin-binding EGF-like growth factor: a unique role for proHB-EGF in cell survival regulation. J Biol Chem 2001; 276: 301727–30132
  • Albihn A, Loven J, Ohlsson J, Osorio L M, Henriksson M. cMyc-dependent etoposide-induced apoptosis involves activation of Bax and caspases, and PKCdelta signaling. J Cell Biochem 2006; 98: 1597–1614
  • Sawada M, Nakashima S, Banno Y, Yamakawa H, Hayashi K, Takenaka K, Nishimura Y, Sakai N, Nozawa Y. Ordering of ceramide formation, caspase activation, and Bax/Bcl-2 expression during etoposide-induced apoptosis in C6 glioma cells. Cell Death Differ 2000; 7: 761–772
  • Brantley-Finley C, Lyle C S, DU L, Goodwin M E, Hall T, Szwedo D, Kaushal G P, Chambers T C. The JNK ERK and p53 pathways play distinct roles in apoptosis mediated by the antitumor agents vinblastine, doxorubicin, and etoposide. Biochem Pharmacol 2003; 66: 459–469
  • Ferraro C, Quemenueur L, Fournel S, Prigent A FR, Evillard J P, Bonnefoy-Berard N. The topoisomerase inhibitors camptothecin and etoposide induce a CD95-independent apoptosis of activated peripheral lymphocytes. Cell Death Differ 2000; 7: 197–206
  • Sebestyén A, Mihalik R, Peták I, Kopper L. Modulation of apoptosis signaling in etoposide-treated lymphoma cells. Anticancer Res 1997; 17: 2609–2614
  • Yao K S, O'Dwyer P J. Involvement of NF-kappa Bin the induction of NAD(P)H:quinone oxidoreductase (DT-diaphorase) by hypoxia, oltipraz and mitomycin C. Biochem Pharmacol 1995; 49: 275–282
  • Kang Y H, Lee K A, Ryu C J, Lee H G, Lim J S, Park S N, Paik S G, Yoon D Y, Mitomycin C. induces apoptosis via Fas/FasL dependent pathway and suppression of IL-18 in cervical carcinoma cells. Cancer Lett 2006; 237: 33–44
  • Ise K, Sato Y, Matsuyama S, Gunji T, Ishii S, Yamashita M, Kanazawa Y, Gotoh M. Transforming growth factor-beta signaling is enhanced following mitomycin-C treatment of islet xenograft. Transplant Proc 2004; 36: 1183–1185
  • Miura Y, Kataoka H, Joh T, Tada T, Asai K, Nakanishi M, Okada N, Okada H. Susceptibility to killer T cells of gastric cancer cells enhanced by Mitomycin-C involves induction of ATBF1 and activation of p21 9Waf1/Cip1) promoter. Microbiol Immunol 2004; 48: 137–145
  • Pirnia F, Schneider E, Betticher D C, Borner M M, Mitomycin C. induces apoptosis and caspase-8 and -9 processing through a caspase-3 and Fas-independent pathway. Cell Death Differ 2002; 9: 905–914
  • Crowston J G, Chang L H, Constable P H, Daniels J T, Akbar A N, Khaw P T. Apoptosis gene expression and death receptor signaling in mitomycin-C-treated human tenon capsule fibroblasts. Invest Ophthalmol Vis Sci 2002; 43: 692–699
  • Keller K L, Overbeck-Carrick T L, Beck D J. Survival and induction of SOS in Escherichia coli treated with cisplatin, UV-irradiation, or mitomycin C are dependent on the function of the RecBC and REcFOR pathways of homologous recombination. Mutat Res 2001; 486: 21–29
  • Sun H Z, Wu S F, Tu Z H. Blockage of IGF-1R signaling sensitizes urinary bladder cancer cells to mitomycin-mediated cytotoxicity. Cell Res 2001; 11: 107–115
  • Hiwasa T, Chen Z, Nomura J, Yamamori H, Tashiro T, Nakajima N, Suzuki N. Differential sensitivity to mitomycin C between human RSa cell line and its derivative UVr-1. Anticancer Res 1999; 19: 3915–3920
  • Costa L G. Signal transduction in environmental neurotoxicity. Annu Rev Pharmacol Toxicol 1998; 38: 21–43
  • Chen G, Bunce N J. Interaction between halogenated aromatic compounds in the Ah receptor signal transduction pathway. Environ Toxicol 2004; 19: 480–409
  • Shimokawa N, Miyazaki W, Iwasaki T, Koibuchi N. Low dose hydroxylated PCB induces c-jun expression in PC12 cells. Neurotoxicology 2006; 27: 176–183
  • Fonnum F, Mariussen E, Reistad T. Molecular mechanisms involved in the toxic effects of polychlorinated biphenyls (PCBs) and brominated flame retardants (BFRs). J Toxicol Environ Health A 2006; 69: 21–35
  • Basha M R, Braddy N S, Zawia N H, Kodavanti P R. Ontogenetic alterations in prototypical transcription factors in the rat cerebellum and hippocampus following perinatal exposure to a commercial PCB mixture. Neurotoxicology 2006; 27: 118–124
  • Kodavanti P R, Ward T R. Differential effects of commercial polybrominated diphenyl ether and polychlorinated biphenyl mixtures on intracellular signaling in rat brain in vitro. Toxicol Sci 2005; 85: 952–962
  • Machala M, Bláha L, Vondrácek J, Trosko J E, Scott J, Upham B L. Inhibition of gap junctional intercellular communication by noncoplanar polychlorinated biphenyls: inhibitory potencies and screening for potential mode(s) of action. Toxicol Sci 2003; 76(1)102–111
  • Canzoniero L M, Adornetto A, Secondo A, Magi S, Dell'aversano C S, Corziello A, Amoroso S, Di Renzo G. Involvement of the nitric oxide/protein kinase G pathway in polychlorinated biphenyl-induced cell death in SH-SY 5Y neuroblastoma cells. J Neurosci Res 2006; 84: 692–697
  • Eum S Y, Rha G B, Hennig B, Toborek M. C-Src is the primary signaling mediator of polychlorinated biphenyl-induced interleukin-8 expression in a human microvascular endothelial cell line. Toxicol Sci 2006; 92: 311–320
  • Ma R, Sassoon D A. PCBs exert an estrogenic effect through repression of the Wnt7a signaling pathway in the female reproductive tract. Environ Health Perspect 2006; 114: 898–904
  • Smithwick L A, Smith A, Quensen J F, III, Stack A, London L, Morris P J. Inhibition of LPS-induced splenocyte proliferation by ortho-substituted polychlorinated biphenyl congeners. Toxicology 2003; 188: 319–333
  • Kovacic P, Somanathan R. Mechanism of teratogenesis: electron transfer, reactive oxygen species, and antioxidants. Birth Defects Res Part C 2006; 78: 308–325
  • Safe S, Wormke M. Inhibitory aryl hydrocarbon receptor-estrogen receptor α cross-talk and mechanisms of action. Chem Res Toxicol 2003; 16: 807–812
  • Wang L, Hingerty B E, Shapiro R, Broyde S. Structural and stereoisomer effects of model estrogen quinone-derived DNA adducts: N6-(2-hydroxyestron-6(alpha,beta)-yl)-2′-deoxyadenosine and N2-(2-hydroxyestron-6(alpha,beta)-yl)-2′deoxyguanosine. Chem Res Toxicol 2004; 17: 311–324
  • Markushin Y, Zhong W, Cavalieri E L, Rogan E G, Small G J, Yeung E S, Jankowiak R. Spectral characterization of catechol estrogen quinone (CEQ)-derived DNA adducts and their identification in human breast tissue extract. Chem Res Toxicol 2003; 16: 1107–1117
  • Lin P H, Nakamura J, Yamaguchi S, Asakura S, Swenberg J A, Aldehydic D NA. lesions induced by catechol estrogens in calf thymus DNA. Carcinogenesis 2003; 24: 1133–1141
  • Akanni A, Abul-Hajj Y J. Estrogen-nucleic acid adduct: dissection of the reaction of 3,4-estrone quinone and its radical anion and radical cation with deoxynucleosides and DNA. Chem Res Toxicol 1999; 12: 1247–1253
  • Jankowiak R, Zamzow D, Stack D E, Todorovic R, Cavalieri E L, Small G J. Spectral characterization of fluorescently labeled catechol estrogen 3,4-quinone-derived N7 guanine adducts and their identification in rat mammary gland tissue. Chem Res Toxicol 1998; 11: 1339–1345
  • Terashima I, Suzuki N, Dasaradhi L, Tan C K, Downey K M, Shibutani S. Translesional synthesis on DNA templates containing an estrogen quinone-derived adduct: N2-(2-hydroxyestron-6-yl)-2′-deoxyguanosine and N6-(2-hydroxyestron-6-yl)-2′deoxyadenosine. Biochemistry 1998; 37: 13807–13815
  • Roy D, Abul-Hajj Y J. Estrogen-nucleic acid adducts: guanine is major site for interaction between 3,4-estrone quinone and COIII gene. Carcinogenesis 1997; 18: 1247–1249
  • Terashima I, Suzuki N, Shibutani S. Mutagenic properties of estrogen quinone-derived DNA adducts in simian kidney cells. Biochemistry 2001; 40: 166–172
  • Katzenellenbogen B S. Estrogen receptors: bioactivities and interactions with cell signaling pathways. Biol Reprod 1996; 54: 287–293
  • Revankar C M, Cimino D F, Sklar L A, Arterburn J B, Prossnitz E R. A transmembrane intracellular estrogen receptor mediates rapid cell signaling. Science 2005; 307: 1625–1630
  • Nakazawa T, Takahashi H, Shimura M. Estrogen has a neuroprotective effect on axotomized RGCs through ERK signal transduction pathway. Brain Res 2006; 1093(1)141–149
  • Márquez D C, Chen H W, Curran E M, Welshons W V, Pietras R J. Estrogen receptors in membrane lipid rafts and signal transduction in breast cancer. Mol Cell Endocrinol 2006; 246: 91–100
  • Hisamoto K, Bender J R. Vascular cell signaling by membrane estrogen receptors. Steroids 2005; 70: 382–387
  • Goodenough S, Schäfer M, Behl C. Estrogen-induced cell signaling in a cellular model of Alzheimer's disease. J Steroid Biochem Mol Biol 2003; 84: 301–305
  • Fatehi M, Kombian S B, Saleh T M. 17beta-estradiol inhibits outward potassium currents recorded in rat parabranchial nucleus cells in vitro. Neuroscience 2005; 135: 1075–1086
  • Canesi L, Ciacci C, Betti M, Lorusso L C, Marchi B, Burattini S, Falcieri E, Gallo G. Rapid effects of 17beta-estradiol on cell signaling and function of mytilus hemocytes. Gen Comp Endocrinol 2004; 136: 58–71
  • Lieberherr M, Grosse B, Kachkache M, Balsan S. Cell signaling and estrogens in female rat osteoblasts: A possible involvement of unconventional nonnuclear receptors. J Bone Miner Res 1993; 8: 1365–1376
  • Jacintho J, Kovacic P. Neurotranemission and neurontoxicity by nitric oxide, catecholamines and glutamate: unifying themes of reactive oxygen species and electron transfer. Curr Med Chem 2003; 10: 2693–2704
  • Zhao L, Ching L, Kestell P, Kelland L R, Baguley B C. Mechanisms of tumor vascular shutdown induced by 5,6-dimethylxanthenone-4-acetic acid (DMXAA): Increased tumor vascular permeability. Int J Cancer 2005; 116: 322–326
  • Zhou S, Kestell P, Baguley B C, Paxton J W. 5,6-Dimethylxanthenone-4-acetic acid (DMXAA): A new biological response modifier for cancer therapy. Investig New Drugs 2002; 20: 281–295
  • Baguley B C. Small-molecule cytokine inducers causing tumor necrosis. Curr Opin Investig Drugs 2001; 2: 267–975
  • Kovacic P. Fundamental, electron transfer mechanism by pyrylium-type ions for the anticancer drugs 5,6-dimethylxanthenone-4-acetic acid (DMXAA) and flavone-8-acetic acid (FAA). Curr Med Chem-Anticancer Agents 2005; 5: 501–506
  • Rabinovitz M. The structure of flavone-8-acetic acid, a chemotherapeutic agent and its application in drug design. J Enzyme Inhibit 1988; 2: 151–152
  • Moon K, Kaifer A E. Modes of binding interaction between viologen guests and the cucurbit[7]uril host. Org Lett 2004; 6: 185–188
  • Bowles M R, Mulhern T D, Gordon R B, Inglis H R, Sharpe I A, Cogill J L, Pond S M. Bound Tris confounds the identification of binding site residues in a paraquat single chain. J Biochem (Tokyo) 1997; 122: 101–108
  • Bowles M R, Pond S M. The importance of electrostatic interactions in the binding of paraquat to its elicited monoclonal antibody. Mol Immunol 1990; 27: 847–852
  • Hogg P J, Johnston S C, Bowles M R, Ponds S M, Winzor D J. Evaluation of equilibrium constants for antigen-antibody interactions by solid-phase immunoassay: The binding of paraquat to its elicited mouse monoclonal antibody. Mol Immunol 1987; 24: 797–801
  • Sullivan T M, Montgomery M R. The relationship between paraquat accumulation and covalent binding in rat lung slices. Drug Metab Dispos 1983; 11: 526–530
  • Giri S N, Lunsman P. Binding of [methyl-3h] paraquat to rat, rabbit, hamster, mouse and guinea pig lung proteins, in vitro. Toxicol Lett 1981; 9: 93–100
  • Minchin R F. Evidence for the reversible binding of paraquat to deoxyribonucleic acid. Chem Biol Interact 1987; 61: 139–149
  • Baguley B C, Wakelin L PG, Jacintho J D, Kovacic P. Mechanism of action of DNA intercalating acridine-based drugs: How important and contributions from electron transfer and oxidative stress?. Curr Med Chem 2003; 10: 2643–2650
  • Pastwa E, Ciesielska E, Piestrzeniewicz M K, Denny W A, Gniazdowski M, Szmigiero L. Cytotoxic and DNA-damaging properties of N-[2-(dimethylamino)ethyl]acridine-4-carboxamide (DACA) and its analogues. Biochem Pharmacol 1998; 56: 351–359
  • Robertson I G, Bland T J. Inhibition of SKF-525A of the aldehyde oxidase-mediated metabolism of the experimental antitumour agent acridine carboxamide. Biochem Pharmacol 1993; 45: 2159–2162
  • Ferguson L R, Turner P M, Baguley B C. Induction of mitotic crossing-over by the topoisomerase II poison DACA (N-[2-dimethylamnio)ethyl]acridine-4-carboxamide) in Saccharomyces cerevisiae. Mutat Res 1993; 289: 157–163
  • Haldane A, Holdaway K M, Finlay G J, Baguley B C. Cytokinetic differences in the action of N-[2-(dimethylamino)ethyl]acridine-4-carboxamide as compared with that of amsacrine and doxorubicin. Cancer Chemother Pharmacol 1993; 32: 463–470
  • Stryer L. Biochemistry. Freeman, New York 1995; 332–339
  • Salem L. The sudden polarization effect and its possible role in vision. Acc Chem Res 1979; 12: 87–92
  • Bonacic-Koutecky V, Koutecky J, Michl J. Neutral and charged biradicals, zwitterions, funnels in Sl, and proton translocation: their role in photochemistry, photophysics, and vision. Angew Chem Int Ed Engl 1987; 26: 170–189
  • Sheves M, Nakanishi K, Honig B. Through-space electrostatic effects in electronic spectra. Experimental evidence for the external point-charge model of visual pigments. J Am Chem Soc 1979; 101: 7086–7088
  • Hubbell W L, Altenbach C, Hubbell C M, Khorana H G. Rhodopsin structure, dynamics and activation. Advances in Protein Chemistry. Membrane Proteins, F MF Richard, D S Eisenberg, J Kuriyan. Academic Press, New York 2003; 63: 243–290
  • Schwartz T. Molecular structure and function of TTM G-protein coupled receptors. Textbook of Receptor Pharmacology, J C Foreman, T Johnsasen. CRC Press, New York 2002; 88
  • Crawford P W, Kovacic P, Gilman N W, Ryan M D. Charge transfer mechanism for benzodiazepine (BZ) action. Correlation of reduction potential of BZ iminium with structure and drug activity. Bioelectrochem Bioenerg 1986; 16: 407–426
  • Kovacic P, Ames J R, Tayler E C, Ryan M D. Electrochemistry of the anticancer agents methotrexate and α -diflouoromethylornithine in iminium form. J Pharm Sci 1988; 77: 999–1002
  • Maejima M, Maruoka Y, Sawada T, Ando T, Kobayashi M, Ogiuchi H. Expression of vascular endothelial growth factor (VEGF) and specific receptors (Flt-1 and Flk-1) in rat tongue carcinogenesis induced by 4-nitroquinofine 1-oxide. Acta Histochem Cytochem 2002; 35: 331–341
  • Li Y, Wang L, Li S, Guo T, Guo X, Yan P, Chen Y, Wang L, Lu C. p53 protein activates the transcription of human proliferating cell nuclear antigen in response to 4-nitroquinoline N-oxide treatment. Int J Biochem Cell Biol 2005; 27: 416–426

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.