67
Views
22
CrossRef citations to date
0
Altmetric
Review Article

Unifying Electrostatic Mechanism for Receptor-Ligand Activity

, &
Pages 411-431 | Published online: 10 Oct 2008

REFERENCES

  • Kovacic P, Pozos R S. Bioelectronome. Integrated approach to receptor chemistry, radicals, electrochemistry, cell signaling and physiological effects based on electron transfer. J Recept Signal Transduct 2007; 27: 261–294
  • Kovacic P, Pozos R S. Cell signaling (mechanism and reproductive toxicity): redox chains, radicals, electrons, relays, conduit, electrochemistry and other medical implications. Birth Defects Res Part C 2006; 78: 333–344
  • Ishikita H, Knapp E W. Electrostatic role of the non-heme iron complex in bacterial photosynthetic reaction center. FEBS Lett 2006; 580: 4567–4570
  • Kovacic P. Protein electron transfer (mechanism and reproductive toxicity), iminium, hydrogen bonding, homoconjugation, amino acids, side chains (redox and charged) and cell signaling. Birth Defects Res Part C 2007; 81: 51–64
  • Rigby M, Smith E B, Wakeham A, Maitland G C. The Forces Between Molecules. Oxford University Press, Oxford 1986; 165–185
  • CRC Handbook of Chemistry and Physics, 77th ed, R Lide, Boca Raton, FL 1996; 9-42–9-50
  • Gringauz A. Introduction to Medicinal Chemistry. Wiley-VCH, New York 1997; 341–344
  • Gringauz A. Introduction to Medicinal Chemistry. Wiley-VCH, New York 1997; 560
  • Gringauz A. Introduction to Medicinal Chemistry. Wiley-VCH, New York 1997; 565–566
  • Gringauz A. Introduction to Medicinal Chemistry. Wiley-VCH, New York 1997; 651–652
  • Welsh J H, Taub R. Structure-activity relationships of acetylcholine and quaternary ammonium ions. J Pharmacol Exper Ther 1950; 99: 334–342
  • Welsh J H, Taub R. The significance of the carbonyl group and ether oxygen in the reaction of acetyl choline with receptor substance. J Pharmacol Exper Ther 1951; 103: 62–73
  • Acevedo M. Effect of acetyl choline on ion transport in sheep tracheal epithelium. Pflugers Arch 1994; 427: 543–546
  • Isaacs P E, Corbett C L, Riley A K, Hawker P C, Turnberg L A. In vitro behavior of human intestinal mucosa. The influence of acetyl choline on ion transport. J Clin Invest 1976; 58: 535–542
  • Boyd A E, 3rd. The role of ion channels in insulin secretion. J Cell Biochem 1992; 48: 235–241
  • Roberts E, Sherman M A. GABA—The quintessential neurotransmitter: Electroneutrality, fidelity, specificity, and a model for the ligand binding site of GABAA receptors. Neurochem Res 1993; 18: 365–376
  • Odai K, Sugimoto T, Hatakeyama D, Kubo M, Ito E. A theoretical study of electronic and structural states of neurotransmitters: Gamma-aminobutryic acid and glutamic acid. J Biochem (Tokyo) 2001; 129: 909–915
  • Tsuda M, Takada T, Miyazaki M, Uda Y, Kuzuhara S, Kitaura K. A study of gamma-aminobutyric acid (GABA) and its analogues by using molecular orbital methods: on epileptogencity of new quinolones. J Psychiatry Neurol 1993; 47: 675–682
  • Cupello A. Neuronal transmembrane chloride electrochemical gradient: A key player in GABA A receptor activation physiological effect. Amino Acids 2003; 24: 335–346
  • Cupello A, Rapallino M V. Unorthodox view of the functioning of a GABAA synapse. Cell Mol Neurobiol 2002; 22: 121–137
  • Aprison M H, Glavez-Ruano E, Robertson D H, Lipkowitz K B. Glycine and GABA receptors: Molecular mechanisms controlling chloride ion flux. J Neurosci Res 1996; 43: 372–381
  • Raines D E, Claycomb R J, Forman S A. Modulation of GABA(A) receptor function by nonhalogenated alkane anesthetics: The effects on agonist enhancement, direct activation, and inhibition. Anesth Analg 2003; 96: 112–118
  • Raines D E, Claycomb R J, Scheller M, Forman S A. Nonhalogenated alkane anesthetics fail to potentiate agonist actions on two ligand-gated ion channels. Anesthesiology 2001; 95: 470–477
  • Raines D E, Claycomb R J, Forman S A. Nonhalogentaed anesthetic alkanes and perhalogenated nonimmobilizing alkanes inhibit alpha(4)beta(2) neuronal nicotinic acetylcholine receptors. Anesth Analg 2002; 95: 573–577
  • Haka K, Eger E I, 2nd, Laster M J, Harris R A. Nonhalogentaed alkanes cyclopropane and butane affect neurotransmitter-gated ion channel and G-protein-coupled receptors: Differential actions on GABAA and glycine receptors. Anesthesiology 2002; 97: 1512–1520
  • Kovacic P, Somanathan R. Neurotoxicity: The broad framework of electron transfer, oxidative stress and protection by antioxidants. Curr Med Chem CNS Agents 2005; 5: 249–258
  • Topiol S, Weinstein H, Osman R. A theoretical investigation of histamine tautomerism. J Med Chem 1984; 27: 1531–1534
  • Nair A C, Mishra P C. Study of structure-activity relationships for neurotransmitters using molecular electric field mapping: Histamine and some of its H2-receptor agonists. India J Biochem Biophys 1994; 31: 496–500
  • He D, Funabashi T, Sano A, Uemura T, Minaguchi H, Kimura F. Effects of glucose and related substrates on the recovery of the electrical activity of gonadotropin-releasing hormone pulse generator which is decreased by insulin-induced hypoglycemia in the estrogen-primed ovariectomized rat. Brain Res 1999; 820: 71–76
  • Kusano K, Fueshko S, Gainer H, Wray S. Electrical and synaptic properties of embryonic luteinizing hormone-releasing hormone neurons in explant cultures. Proc Natl Acad Sci USA 1995; 92: 3918–3922
  • Tomioka K, Agui N, Bollenbacher W E. Electrical properties of the cerebral prothoracicotropic hormone cells in diapausing and non-diapausing pupae of the tobacco hornworm, Manduca sexta. Zool Sci 1995; 12: 165–173
  • De Luca A, Pierno S, Cocchi D, Conte Camerino D. Growth hormone administration to aged rats improves membrane electrical properties of skeletal muscle fibers. J Pharmacol Exp Ther 1994; 269: 948–953
  • Nishihara M, Sano A, Kimura F. Cessation of the electrical activity of gonadotropin-releasing hormone pulse generator during the steroid-induced surge of luteinizing hormone in the rat. Neuroendocrinology 1994; 59: 513–519
  • Williams C L, Thalabard J C, O'Byrne K T, Grosser P M, Nishihara M, Hotchkiss J, Knobil E. Duration of phasic electrical activity of the hypothalamic gonadotropin-releasing hormone pulse generator and dynamics of luteinizing hormone pulses in the rhesus monkey. Proc Natl Acad Sci U SA 1990; 87: 8580–8582
  • Pfaff D W. Patterns of steroid hormone effects on electrical and molecular events in hypothalamic neurons. Mol Neurobiol 1989; 3: 135–154
  • Pfaff D W. Features of a hormone-driven defined neural circuit for a mammalian behavior. Ann N Y Acad Sci 1989; 563: 131–147
  • Meyer J H, Leong M, Keller C H. Hormone-induced and maturational changes in electric organ discharges and electroreceptor tuning in the weakly electric fish Apteronotus. J Comp Physiol [A] 1987; 160: 385–394
  • Dunlap K D, Zakon H H. Behavioral actions of androgens and androgen receptor expression in the electrocommunication system of an electric fish, Eigenmannia virescens. Horm Behav 1998; 34: 30–38
  • Murphy L C, Weitsman G E, Skliris G P, Teh E M, Li L, Peng B, Davie J R, Ung K. Niu Y-L, Troup S Tomes L Watson P H. Potential role of estrogen receptor α (ERα) phosphorylated at serine118 in human breast cancer in vivo. J SteroidBiochem Mol Biol 2006; 102: 139–146
  • Lannigan D A. Estrogen receptor phosphorylation. Steroids 2003; 68: 1–9
  • Ismaili N, Garabedian M J. Modulation of glucocorticoid receptor function via phosphorylation. Ann N Y Acad Sci 2004; 1024: 86–101
  • Danila C I, Hamilton S L. Phosphorylation of ryanodine receptors. Biol Res 2004; 37: 521–525
  • Vázquez-Prado J, Casas-González P. Garcia-Sáinz. G protein-coupled receptor cross-talk: Pivotal roles of protein phosphorylation and protein-protein interactions. Cell Signal 2003; 15: 549–557
  • Kittler J T, Moss S J. Modulation of GABAA receptor activity by phosphorylation and receptor trafficking: Implications for the efficacy of synaptic inhibition. Curr Opin Neuro 2003; 13: 341–347
  • Rochette-Egly C. Nulcear receptors: Integration of multiple signaling pathways through phosphorylation. Cell Signal 2003; 15: 355–366
  • Nakazawa T, Tezuka T, Yamamoto T. Regulation of NMDA receptor function by Fyn-mediated tyrosine phosphorylation. Jap J Psychopharm 2002; 22: 165–167
  • Wang J Q, Arora A, Yang L, Parelkar N K, Zhang G, Liu X, Choe E S, Mao L. Phosphorylation of AMPA receptors: Mechanisms and synaptic plasticity. Mol Neurobiol 2005; 32: 237–249
  • Wang J Q, Liu X, Zhang G, Parelkar N K, Arora A, Haines M, Fibuch E E, Mao L. Phosphorylation of glutamate receptors: A potential mechanism for the regulation of receptor function and psychostimulant action. J Neurosci Res 2006; 84: 1621–1629
  • Rubio A, Pérez M. Ávila J. Acetylcholine receptors and tau phosphorylation. Curr Mol Med 2006; 6: 423–428
  • Johnson E E, Christe M J, Connor M. The role of opiod receptor phosphorylation and trafficking in adaptations to persistent opioid treatment. Neurosignals 2005; 14: 290–302
  • Young N, Van Brocklyn J R. Signal transduction of sphingosine-1-phosphate G protein-coupled receptors. Scient World J 2006; 6: 946–966
  • Garrett R H, Grisham C M. Biochemistry. Saunders, New York 1999; 249–250
  • Straub S V, Wagner L E, 2nd, Bruce J I, Yule D I. Modulation of cytosolic calcium signaling by protein kinase A-mediated phosphorylation of inositol 1,4,5-trisphosphate receptors. Biol Res 2004; 37: 593–602
  • Krizanova O, Ondrias K. The inositol 1,4,5-trisphosphate receptor-transcriptional regulation and modulation by phosphorylation. Gen Physiol Biophys 2003; 22: 295–311
  • Schropp D M, Kovacic J. Phosphorus and phosphate metabolism in veterinary patients. J Vet Emerg Crit Care 2007; 17: 127–134
  • Tran X, Calderon-Villalobos L IA, Sharon M, Zheng C, Robinson C V, Extelle M, Zheng N. Mechanism of auxin perception by the TIR1 ubiquitin ligase. Nature 2007; 446: 640–645
  • Kovacic P, Wakelin L PG. DNA molecular electrostatic potential: Novel perspective for the mechanism of action of anticancer drugs involving electron transfer and oxidative stress. Anti-Canc Drug Des 2001; 16: 1–10
  • Mohammadi M, Olsen S K, Goetz R. A protein canyon in the FGF-FGF receptor dimer selects from an à la carte menu of heparan sulfate motifs. Curr Opin Struct Biol 2005; 15: 506–516
  • David G, Danneels A, Duerr J, Grootjans J, Mertens G, Nackaerts K, Romaris M, Schrurs B, Steinfeld R, Vekemans S. Heparan sulfate proteoglycans. Essential co-factors in receptor-mediated processes with relevance to the biology of the vascular wall. Atherosclerosis 1995; 118: S57–67
  • McKeehan W L, Kan M. Heparan sulfate fibroblast growth factor receptor complex: Structure-function relationships. Mol Reprod Dev 1994; 39: 69–81
  • Bishop J R, Schuksz M, Esko J D. Heparan sulphate proteoglycans fine-tune mammalian physiology. Nature 2007; 446: 1030–1037
  • Dong J, Ye P, Schade A J, Gao S, Romo G M, Turner N T. McIntire L VLópez J A. Tyrosine sulfation of glycoprotein I(b)alpha. Role of electrostatic interactions in von Willebrand factor binding. J Biol Chem 2001; 276: 16690–16694
  • Duisit G, Saleun S, Douthe S, Barsoum J, Chadeuf G, Moullier P. Baculovirus vector requires electrostatic interactions including heparan sulfate for efficient gene transfer in mammalian cells. J Gene Med 1999; 1: 93–102
  • Edelstein S J, Changeux J P. Allosteric transitions of the acetylcholine receptor. Adv Protein Chem 1998; 51: 121–184
  • Birdsall N J, Farries T, Gharagozioo P, Kobayashi S, Kuonen D, Lazareno S, Popham A, Sugimoto M. Selective allosteric enhancement of the binding and actions of acetylcholine at muscarinic receptor subtypes. Life Sci 1997; 60: 1047–1052
  • Binet V, Goudet C, Brajon C. Le Corre L Acher F Pin J PPrézeau L. Molecular mechanisms of GABA (B) receptor activation: New insights from the mechanism of action of CGP7930, a positive allosteric modulator. Biochem Soc Trans 2004; 32: 871–872
  • Morrow J A, Maclean J K, Jamieson C. Recent advances in positive allosteric modulators of the AMPA receptor. Curr Opin Drug Discov Dev 2006; 9: 571–579
  • Ritzén A, Mathiesen J M, Thomsen C. Molecular pharmacology and therapeutic prospects of metabotropic glutamate receptor allosteric modulators. Basic Clin Pharmacol Toxicol 2005; 97: 202–213
  • Williams D L, Jr, Lindsley C W. Discovery of positive allosteric modulators of metabotropic glutamate receptor subtype 5 (mGluR5). Curr Top Med Chem 2005; 5: 825–846
  • Rudd M T. McCauley J A. Positive allosteric modulators of the metabotropic glutamate receptor subtype 2 (mGluR2). Curr Top Med Chem 2005; 5: 869–884
  • Kuhn R, Pagano A, Stoehr N, Vranesic I, Flor P J, Lingenhöhl K, Spooren W, Gentsch C, Vassoul A, Pilc A, Gasparini F. In vitro and in vivo characterization of MPEP, an allosteric modulator of the metabotropic glutamate receptor subtype 5: Review article. Amino Acids 2002; 23: 207–211
  • Bleakman D, Gates M R, Ogden A M, Mackowiak M. Kainate receptor agonists, antagonists and allosteric modulators. Curr Pharm Des 2002; 8: 873–885
  • He X L, Dukkipati A, Wang X, Garcia K C. A new paradigm for hormone recognition and allosteric receptor activation revealed from structural studies of NPR-C. Peptides 2005; 26: 1035–1043
  • Sharma R K, Yadav P, Duda T. Allosteric regulatory step and configuration of the ATP-binding pocket in atrial natriuretic factor receptor guanylate cyclase transduction mechanism. Can J Physiol Pharmacol 2001; 79: 682–691
  • Harman J G. Allosteric regulation of the cAMP receptor protein. Biochem Biophys Acta 2001; 1547: 1–17
  • Geserick C, Meyer H A, Haendler B. The role of DNA response elements as allosteric modulators of steroid receptor function. Mol Cell Endocrinol 2005; 236: 1–7
  • Bertrand D, Changeux J P. Nicotinic receptor: A prototype of allosteric ligand-gated ion channels and its possible implications in epilepsy. Adv Neurol 1999; 79: 171–188
  • Kovacic P, Kiser P F, Reger D L, Huff M F, Feinberg B A. Electrochemistry of Cu (I) bipyridyl complexes with alkene, alkyne, and nitrile ligands. Implications for plant hormone action of ethylene. Free Rad Res Commun 1991; 15: 143–149
  • Leshem Y. The Molecular and Hormonal Basis of Plant-growth Regulation. Springer-Verlag, New York 1973; 143
  • Bhalia U S. Models of cell signaling pathways. Curr Opin Genet Dev 2004; 14: 375–381
  • Dueber J E, Yeh B J, Bhattacharyya R P, Lin W A. Rewiring cell signaling: The logic and plasticity of eukaryotic protein circuitry. Curr Opin Struct Biol 2004; 14: 690–699
  • Benjamin A M, Quastel J H. Acetylcholine synthesis in synaptosomes: Mode of transfer of mitochondrial acetyl coenzyme A. Science 1981; 213: 95–1497
  • Murthy V N, Stevens C F. Synaptic vesicles retain their identity through the endocytic cycle. Nature 1998; 392: 497–501
  • Henderson Z, Boros A, Janzso G, Westwood A J, Monyer H, Halasy K. Somato-dendritic nicotinic receptor responses recorded in vitro from the medial septal diagonal band complex of the rodent. J Physiol 2005; 562: 165–182
  • Picciotto M R, Caldarone B J, Brunzell D H, Zachariou V, Stevens T R, King S L. Neuronal nicotinic acetylcholine receptor subunit knockout mice: Physiological and behavioral phenotypes and possible clinical implications. Pharmacol Ther 2001; 92: 89–108
  • Hille B. Ionic Channels of Excitable Membranes, 2nd ed. Sinauer Associates, Sunderland, MA 1992
  • van Koppen C J, Kaiser B. Regulation of muscarinic ACH signaling. Pharmacol Ther 2003; 98: 197–220
  • Westfall T C, Westfall D P. Neurotransmission. The autonomic and somatic motor nervous system. The Pharmacological Basis of Therapeutics, L L Brunton, J S Lazo, K L Parker. McGraw Hill, Goodman and Gilman. 2006; 160–170
  • Shikata T, Hashimoto K. Dielectric features of neurotransmitters, γ-aminobutyric acid and L-glutamate for molecular recognition by receptors. J Phys Chem B 2003; 107: 8701–8705

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.