99
Views
5
CrossRef citations to date
0
Altmetric
Mini Review

Does Structural Commonality of Metal Complex Formation by PAC-1 (anticancer), DHBNH (anti-HIV), AHL (autoinducer), and UCS1025A (anticancer) Denote Mechanistic Similarity? Signal Transduction and Medical Aspects

Pages 141-152 | Published online: 10 Oct 2008

REFERENCES

  • Kovacic P, Becvar L E. Mode of action of anti-infective agents: Focus on oxidative stress and electron transfer. Curr Pharmaceut Des 2000; 6: 143–167
  • Kovacic P, Osuna J A. Mechanisms of anti-cancer agents: Emphasis on oxidative stress and electron transfer. Curr Pharmaceut Des 2000; 6: 277–309
  • Kovacic P, Jacintho J D. Mechanisms of carcinogenesis: Focus on oxidative stress and electron transfer. Curr Med Chem 2001; 8: 773–796
  • Kovacic P, Jacintho J D. Reproductive toxins: Pervasive theme of oxidative stress and electron transfer. Curr Med Chem 2001; 8: 863–892
  • Kovacic P, Sacman A, Wu-Weiss M. Nephrotoxins: Widespread role of oxidative stress and electron transfer. Curr Med Chem 2002; 9: 823–847
  • Poli G, Cheeseman K H, Dianzani M U, Slater T F. Free Radicals in the Pathogenesis of Liver Injury. Pergamon, New York 1989
  • Kovacic P, Somanathan R. Neurotoxicity: The broad framework of electron transfer, oxidative stress and protection by antioxidants. Curr Med Chem-CNS Agents 2005; 5: 249–258
  • Kovacic P, Thurn L A. Cardiovascular toxins from the perspective of oxidative stress and electron transfer. Curr Vasc Pharmacol 2005; 3: 107–118
  • Kovacic P, Pozos R S, Somanathan R, Shangari N, O'Brien P J. Mechanism of mitochondrial uncouplers, inhibitors and toxins: Focus on electron transfer, free radicals and structure-activity relationships. Curr Med Chem 2005; 12: 2601–2624
  • Kovacic P, Cooksy A L. Unifying mechanism for toxicity and addiction by abused drugs: electron transfer and reactive oxygen species. Med Hypotheses 2005; 64: 357–366
  • Halliwell B, Gutteridge J MC. Free Radicals in Biology and Medicine. Oxford University Press, New York 1999
  • Putt K S, Chen G W, Pearson J M, Sandhorst J S, Hoagland M S, Kwon J-T, Hwang S-K, Jin H, Churchwell M I, Cho M-H, Doerge D R, Helferich W G, Hergenrother P J. Small-molecule activation of procaspase-3 to caspase-3 as a personalized anticancer strategy. Nature Chem Biol 2006; 2: 543–550
  • Noblia P, Vieites M, Parajon-Costa B S, Baran E J, Cerecetto H, Draper P, Gonzalez M, Piro O E, Castellano E E, Azqueta M, Lopez de Cerain A, Monge-Vega A, Gambino D. Vanadium (V) complexes with salicylaldehyde semicarbazone derivatives bearing in vitro anti-tumor activity toward kidney tumor cells (TK-10): crystal structure of [VVO2(5-bromosalicylaldehyde semicarbazone)]. J Inorg Biochem 2005; 99: 443–451
  • Himmel D M, Sarafianos S G, Dharmasena S, Hossain M M, McCoy-Simandle K, Ilina T, Clark A D, Knight J L, Julias J G, Clark P K, Krogh-Jespersen K, Levy R M, Hughes S H, Parniak M A, Arnold E. HIV-1 reverse transcriptase structure with R Nase H inhibitor dihydroxy benzoyl naphthyl hydrazone bound at a novel site. ACS Chem Biol 2006; 1: 702–712
  • Geske G, Wezeman R J, Siegel A P, Blackwell H E. Small molecule inhibitors of bacterial quorum sensing and biofilm formation. J Am Chem Soc 2005; 27: 112762–112763
  • Blackwell H E. Bacterial crowd control with iron. Chem Biol 2005; 12: 721–723
  • Musk D J, Banko D A, Hergenrother P J. Iron salts perturb biofilm formation and disrupt existing films of Pseudomonas aeruginosa. Chem Biol 2005; 12: 789–796
  • Liu T, Ramesh A, Ma Z, Ward S K, Zhang L, George G N, Talaat A M, Sacchettini J C, Giedroc D P. CsoR is a novel Mycobacterium tuberculosis copper-sensing transcriptional regulator. Nature Chem Biol 2006; 3: 60–68
  • Hynes M J, Clarke E M. Reactions of metal ions with β-ketoamides. J Chem Soc Perkin Trans 2 1998; 1263–1267
  • Bainton N J, Bycroft B W, Chhabra S R, Stead P, Gledhill L, Hill P J, Rees C ED, Winson M K, Salmond G PC, Stewart G SAB, Williams P. A general role for the lux autoinducer in bacterial cell signaling: control of antibiotic biosynthesis in Erwinia. Gene 1992; 116: 87–91
  • Lambert T H, Danishefsky S J. Total synthesis of UCS1025A. J Am Chem Soc 2006; 128: 426–427, (and reference 2 therein)
  • Manso J A, Perez-Prior M T, del Pilar Garcia-Santos M, Calle E, Casado J. A kinetic approach to the alkylating potential of carcinogenic lactones. Chem Res Toxicol 2005; 18: 1161–1166
  • Kovacic P, Pozos R S. Cell signaling (mechanism and reproductive toxicity): Redox chains, radicals, electrons, relays, conduit, electrochemistry and other medical implications. Birth Defects Res (Part C) 2007; 78: 333–344, (references therein)
  • Kovacic P. Unifying mechanism for bacterial cell signalers (4,5-dihydroxy-2,3-pentanedione, lactones and oligopeptides): Electron transfer and reactive oxygen species. Practical medical features. Med Hypotheses 2007; 69: 1105–1110
  • Leonard S S, Harris G K, Shi X. Metal-induced oxidative stress and signal transduction. Free Radic Biol Med 2004; 37: 1921–1942
  • Jiang H, Fu K, Andrews G K. Gene and cell-type-specific effects of signal transduction cascades on metal-regulated transcription appear to be independent of changes in the phosphorylation of metal-response-element-binding transcription factor-1. Biochem J 2004; 382: 33–41
  • Ralston D M, O'Halloran T V. Metalloregulatory proteins and molecular mechanisms of heavy metal signal transduction. Adv Inorg Biochem 1990; 8: 1–31
  • Wosten M M, Kox L F, Chamnongpol S, Soncini F C, Groisman E A. A signal transduction system that responds to extracellular iron. Cell 2000; 103: 113–125
  • Hidalgo E, Ding H, Demple B. Redox signal transduction via iron-sulfur clusters in the SoxR transcription activator. Trends Biochem Sci 1997; 22: 207–210
  • Johnson W T. Copper and signal transduction: Platelets as a model to determine the role of copper in stimulus-response coupling. Biofactors 1999; 10: 53–59
  • Carri M T, Ferri A, Casciati A, Celsi F, Ciriolo M R, Rotilio G. Copper-dependent oxidative stress, alteration of signal transduction and neurodegeneration in amyotrophic lateral sclerosis. Funct Neurol 2001; 16: 181–188
  • Gomez-Garcia L, Sanchez F M, Vallejo-Cremades M T, de Segura I A, del Campo Ede M. Direct activation of telomerase by GH via phosphatidylinositol 3′ -kinase. J Endocrinol 2005; 185: 421–428
  • Maida Y, Kyo S, Kanaya T, Wang Z, Yatabe N, Tanaka M, Nakamura M, Ohmichi M, Gotoh N, Murakami S, Inoue M. Direct activation of telomerase by EGF through Ets-mediated transactivation of TERT via MAP kinase signaling pathway. Oncogene 2002; 21: 4071–4079
  • Buchkovich K J, Greider C W. Telomerase regulation during entry into the cell cycle in normal human T cells. Mol Biol Cell 1996; 7: 1443–1454
  • Dudognon C, Pendino F, Hillion J, Saumet A, Lanotte M, Segal-Bendirdjian E. Death receptor signaling regulatory function for telomerase: hTERT abolishes TRAIL-induced apoptosis, independently of telomere maintenance. Oncogene 2004; 23: 7469–7474
  • Nanni S, Narducci M, Della Pietra L, Moretti F, Grasselli A, De Carli P, Sacchi A, Pontecorvi A, Farsetti A. Signaling through estrogen receptors modulates telomerase activity in human prostate cancer. J Clin Invest 2002; 110: 219–227
  • Pawelec G. Hypothesis: Loss of telomerase inducibility and subsequent replicative senescence in cultured human T cells is a result of altered costimulation. Mech Ageing Dev 2000; 121: 181–185
  • Igarashi H, Sakaguchi N. Telomerase activity is induced in human peripheral B lymphocytes by the stimulation to antigen receptor. Blood 1997; 89: 1299–1307
  • Igarashi H, Sakaguchi N. Telomerase activity is induced by the stimulation to antigen receptor in human peripheral lymphocytes. Biochem Biophys Res Commun 1996; 219: 649–655
  • Kawabata Y, Hirokawa M, Kitabayashi A, Horiuchi T, Kuroki J, Miura A B. Defective apoptotic signal transduction pathway downstream of caspase-3 in human B-lymphoma cells: A novel mechanism of nuclear apoptosis resistance. Blood 1999; 94: 3523–3530
  • Yang G, Lin S M, Zhao W K. Effect of TX0201 on expression of the apoptosis signal transduction molecule caspase-3 and apoptosis associated genes bcl-2 and bax mRNA in brain tissue of rat analogue model of Alzheimer's disease. Chin J Integr Trad West Med 2006; 26: 147–151
  • Chen X, Wang L L, Cai B, Chen J, Feng W H. Role of Fas-FasL and caspase-3 signal transduction pathway in promoting apoptosis of T lymphocyte subset in SLE patients. Chin J Cell Mol Immunol 2006; 22: 588–590
  • Li G, Xiang Y, Sabapathy K, Silverman R H. An apoptotic signaling pathway in the interferon antiviral response mediated by RNase L and c-Jun NH2-terminal kinase. J Biol Chem 2004; 279: 1123–1131
  • Flodstrom-Tullberg M, Hultcrantz M, Stotland A, Maday A, Tsai D, Fine C, Williams B, Silverman R, Sarvetnick N. RNase L and double-stranded RNA-dependent protein kinase exert complementary roles in islet cell defense during coxsackievirus infection. J Immunol 2005; 174: 1171–1177
  • Malathi K, Paranjape J M, Bulanova E, Shim M, Guenther-Johnson J M, Faber P W, Eling T E, Williams B R, Silverman R H. A transcriptional signaling pathway in the IFN system mediated by 2′-5′-oligoadenylate activation of RNase L. Proc Natl Acad Sci USA 2005; 102: 14533–14538
  • Carr D J, Al-khatib K, James C M, Silverman R. Interferon-beta suppresses herpes simplex virus type 1 replication in trigeminal ganglion cells through an RNase L-dependent pathway. J Neuroimmunol 2003; 141: 40–46
  • Bettoun D J, Scafonas A, Rutledge S J, Hodor P, Chen O, Gambone C, Vogel R, McElwee-Witmer S, Bai C, Freedman L, Schmidt A. Interaction between the androgen receptor and RNase L mediates cross-talk between the interferon and androgen signaling pathways. J Biol Chem 2005; 280: 38898–38901
  • Rice S A, McDougald D, Kumar N, Kjelleberg S. The use of quorom-sensing blockers as therapeutic agents for the control of biofilm-associated infections. Curr Opin Investig Drugs 2005; 6: 178–184

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.