134
Views
7
CrossRef citations to date
0
Altmetric
Research Article

Gene Expression Profiling of Porcine Alveolar Macrophages After Antibody-Mediated Cross-Linking of Sialoadhesin (Sn, Siglec-1)

, , , , , , & show all
Pages 185-243 | Published online: 10 Oct 2008

REFERENCES

  • Crocker P R, Gordon S. Properties and distribution of a lectin-like hemagglutinin differentially expressed by murine stromal tissue macrophages. J Exp Med 1986; 164: 1862–1875
  • Crocker P R, Mucklow S, Bouckson V, McWilliam A, Willis A C, Gordon S, Milon G, Kelm S, Bradfield P. Sialoadhesin, a macrophage sialic acid binding receptor for haemopoietic cells with 17 immunoglobulin-like domains. EMBO J 1994; 13: 4490–4503
  • Hartnell A, Steel J, Turley H, Jones M, Jackson D G, Crocker P R. Characterization of human sialoadhesin, a sialic acid binding receptor expressed by resident and inflammatory macrophage populations. Blood 2001; 97: 288–296
  • Oetke C, Vinson M C, Jones C, Crocker P R. Sialoadhesin-deficient mice exhibit subtle changes in B- and T-cell populations and reduced immunoglobulin M levels. Mol Cell Biol 2006; 26: 1549–1557
  • Vanderheijden N, Delputte P L, Favoreel H W, Vandekerckhove J, Van Damme J, Van Woensel P A. Involvement of Sn in entry of porcine reproductive and respiratory syndrome virus into porcine alveolar macrophages. J Virol 2003; 77: 8207–8215
  • Crocker P R, Paulson J C, Varki A. Siglecs and their roles in the immune system. Nat Rev Immunol 2007; 7: 255–266
  • Angata T, Varki A. Chemical diversity in the sialic acids and related alpha-keto acids: An evolutionary perspective. Chem Rev 2002; 102: 439–469
  • Kumamoto Y, Higashi N, Denda-Nagai K, Tsuiji M, Sato K, Crocker P R, Irimura T. Identification of sialoadhesin as a dominant lymph node counter-receptor for mouse macrophage galactose-type C-type lectin 1. J Biol Chem 2004; 279: 49274–49280
  • Martinez-Pomares L, Crocker P R, Da Silva R, Holmes N, Colominas C, Rudd P, Dwek R, Gordon S. Cell-specific glycoforms of sialoadhesin and CD45 are counter-receptors for the cysteine-rich domain of the mannose receptor. J Biol Chem 1999; 274: 35211–35218
  • Jones C, Virji M, Crocker P R. Recognition of sialylated meningococcal lipopolysaccharide by siglecs expressed on myeloid cells leads to enhanced bacterial uptake. Mol Microbiol 2003; 49: 1213–1225
  • Monteiro V G, Lobato C S, Silva A R, Medina D V, de Oliveira M A, Seabra S H, de Souza W, DaMatta R A. Increased association of Trypanosoma cruzi with sialoadhesin positive mice macrophages. Parasitol Res 2005; 97: 380–385
  • Delputte P L, Nauwynck H J. Porcine arterivirus infection of alveolar macrophages is mediated by sialic acid on the virus. J Virol 2004; 78: 8094–8101
  • Delputte P L, Van Breedam W, Delrue I, Oetke C, Crocker P R, Nauwynck H J. Porcine arterivirus attachment to the macrophage-specific receptor sialoadhesin is dependent on the sialic acid-binding activity of the N-terminal immunoglobulin domain of sialoadhesin. J Virol 2007; 81: 9546–9550
  • Hebert E. Endogenous lectins as cell surface transducers. Biosci Rep 2000; 20: 213–237
  • Angata T, Hayakawa T, Yamanaka M, Varki A, Nakamura M. Discovery of Siglec-14, a novel sialic acid receptor undergoing concerted evolution with Siglec-5 in primates. FASEB J 2006; 20: 1964–1973
  • Crocker P R. Siglecs: Sialic-acid-binding immunoglobulin-like lectins in cell-cell interactions and signalling. Curr Opin Struct Biol 2002; 12: 609–615
  • Paul S P, Taylor L S, Stansbury E K, McVicar D W. Myeloid specific human CD33 is an inhibitory receptor with differential ITIM function in recruiting the phosphatases SHP-1 and SHP-2. Blood 2000; 96: 483–490
  • Ikehara Y, Ikehara S K, Paulson J C. Negative regulation of T cell receptor signaling by Siglec-7 (p70/AIRM) and Siglec-9. J Biol Chem 2004; 279: 43117–43125
  • Whitney G, Wang S, Chang H, Cheng K Y, Lu P, Zhou X D, Yang W P, McKinnon M, Longphre M. A new siglec family member, siglec-10, is expressed in cells of the immune system and has signaling properties similar to CD33. Eur J Biochem 2001; 268: 6083–6096
  • Brinkman-Van der Linden E CM, Angata T, Reynolds S A, Powell L D, Hedrick S M, Varki A. CD33/Siglec-3 binding specificity, expression pattern, and consequences of gene deletion in mice. Mol Cell Biol 2003; 23: 4199–4206
  • Vitale C, Romagnani C, Falco M, Ponte M, Vitale M, Moretta A, Bacigalupo A, Moretta L, Mingari M C. Engagement of p75/AIRM1 or CD33 inhibits the proliferation of normal or leukemic myeloid cells. Proc Natl Acad Sci U SA 1999; 96: 15091–15096
  • Vitale C, Romagnani C, Puccetti A, Olive D, Costello R, Chiassone L, Bacigalupo A, Moretta L, Mingari M C. Surface expression and function of p75/ AIRM-1 or CD33 in acute myeloid leukemias: Engagement of CD33 induces apoptosis of leukemic cells. Proc Natl Acad Sci U SA 2001; 98: 5764–5769
  • Nutku E, Aizawa H, Hudson S A, Bochner B S. Ligation of Siglec-8: A selective mechanism for induction of human eosinophil apoptosis. Blood 2003; 101: 5014–5020
  • Von Gunten S, Yousefi S, Seitz M, Jakob S M, Schaffner T, Seger R, Takala J, Villiger P M, Simon H U. Siglec-9 transduces apoptotic and nonapoptotic death signals into neutrophils depending on the proinflammatory cytokine environment. Blood 2005; 106: 1423–1431
  • Erickson-Miller C L, Freeman S D, Hopson C B, D'Alessio K J, Fischer E I, Kikly K K, Abrahamson J A, Holmes S D, King A G. Characterization of Siglec-5 (CD170) expression and functional activity of anti-Siglec-5 antibodies on human phagocytes. Exp Hematol 2003; 31: 382–388
  • Tateno H, Li H, Schur M J, Bovin N, Crocker P R, Wakarchuk W W, Paulson J C. Distinct endocytic mechanisms of CD22 (Siglec-2) and Siglec-F reflect roles in cell signaling and innate immunity. Mol Cell Biol 2007; 27: 5699–5710
  • Tsai S, Mir B, Martin A C, Estrada J L, Bischoff S R, Hsieh W P, Cassady J P, Freking B A, Nonneman D J, Rohrer G A, Piedrahita J A. Detection of transcriptional difference of porcine imprinted genes using different microarray platforms. BMC Genomics 2006; 7: 328
  • Wensvoort G, Terpstra C, Pol J M, ter Laak E A, Bloemraad M, de Kluyver E P, Kragten C, van Buiten L, den Besten A, Wagenaar F. Mystery swine disease in the Netherlands: The isolation of the Lelystad virus. Vet Q 1991; 13: 121–130
  • Nauwynck H J, Pensaert M B. Effect of specific antibodies on the cell-associated spread of pseudorabies virus in monolayers of different cell types. Arch Virol 1995; 140: 1137–1146
  • Shen G, Xu C, Hu R, Jain M R, Nair S, Lin W, Yang C S, Chan J Y, Kong A N. Comparison of (-)-epigallocatechin-3-gallate elicited liver and small intestine gene expression profiles between C57BL/6J mice and C57BL/ 6J/Nrf2 (-/-) mice. Pharm Res 2005; 22: 1805–1820
  • R Development Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, ViennaAustria 2006
  • Gentleman R C, Carey V J, Bates D M, Bolstad B, Dettling M, Dudoit S, Ellis B, Gautier L, Ge Y, Gentry J, Hornik K, Hothorn T, Huber W, Iacus S, Irizarry R, Leisch F, Li C, Maechler M, Rossini A J, Sawitzki G, Smith C, Smyth G, Tierney L, Yang J Y, Zhang J. Bioconductor: open software development for computational biology and bioinformatics. Genome Biol 2004; 5: R80
  • Irizarry R A, Hobbs B, Collin F, Beazer-Barclay Y D, Antonellis K J, Scherf U, Speed T P. Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics 2003; 4: 249–264
  • Smyth G K. Limma: linear models for microarray data. Bioinformatics and Computational Biology Solutions using R and Bioconductor, R Gentleman, V Carey, S Dudoit, R Irizarry, W Huber. Springer, New York 2005; 397–420
  • Dudoit S, Yang Y H, Callow M J, Speed T P. Statistical methods for identifying differentially expressed genes in replicated cDNA microarray experiments. Statistica Sinica 2002; 12: 111–139
  • http://www.ebi.ac.uk/arrayexpress experiment ID “E-MEXP-991.”
  • Brazma A, Hingamp P, Quackenbush J, Sherlock G, Spellman P, Stoeckert C, Aach J, Ansorge W, Ball C A, Causton H C, Gaasterland T, Glenisson P, Holstege F C, Kim I F, Markowitz V, Matese J C, Parkinson H, Robinson A, Sarkans U, Schulze-Kremer S, Stewart J, Taylor R, Vilo J, Vingron M. Minimum information about a microarray experiment (MIAME)—toward standards for microarray data. Nat Genet 2001; 29: 365–371
  • http://david.abcc.ncifcrf.gov/
  • http://www.genome.jp/kegg/kegg2.html
  • Tsai S, Cassady J P, Freking B A, Nonneman D J, Rohrer G A, Piedrahita J A. Annotation of the Affymetrix porcine genome microarray. Anim Genet 2006; 37: 423–424
  • https://www.roche-applied-science.com/sis/rtpcr/upl/adc.jsp
  • Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-delta delta C(T)) method. Methods 2001; 25: 402–408
  • Dennis G Jr, Sherman B T, Hosack D A, Yang J, Gao W, Lane H C, Lempicki R A. DAVID: atabase for Annotation, Visualization, and Integrated Discovery. Genome Biol 2003; 4: P3
  • Blasius A L, Colonna M. Sampling and signaling in plasmacytoid dendritic cells: The potential roles of Siglec-H. Trends Immunol 2006; 27: 255–260
  • Zhang J, Raper A, Sugita N, Hingorani R, Salio M, Palmowski M J, Cerundolo V, Crocker P R. Characterisation of Siglec-H as a novel endocytic receptor expressed on murine plasmacytoid dendritic cell precursors. Blood 2006; 107: 3600–3608
  • Lajaunias F, Dayer J M, Chizzolini C. Constitutive repressor activity of CD33 on human monocytes requires sialic acid recognition and phosphoinositide 3-kinase-mediated intracellular signaling. Eur J Immunol 2005; 35: 243–251
  • Bruder J T, Kovesdi I. Adenovirus infection stimulates the Raf/MAPK signaling pathway and induces interleukin-8 expression. J Virol 1997; 71: 398–404
  • Ait-Ali T, Wilson A D, Westcott D G, Clapperton M, Waterfall M, Mellencamp M A, Drew T W, Bishop S C, Archibald A L. Innate immune responses to replication of porcine reproductive and respiratory syndrome virus in isolated swine alveolar macrophages. Viral Immunol 2007; 20: 105–118
  • Chang A C, Zsak L, Feng Y, Mosseri R, Lu Q, Kowalski P, Zsak A, Burrage T G, Neilan J G, Kutish G F, Lu Z, Laegreid W, Rock D L, Cohen S N. Phenotype-based identification of host genes required for replication of African swine fever virus. J Virol 2006; 80: 8705–8717
  • Favoreel H W, Enquist L W, Feierbach B. Actin and Rho GTPases in herpesvirus biology. Trends Microbiol 2007; 15: 426–433
  • Favoreel H W, Van Minnebruggen G, Adriaensen D, Nauwynck H J. Cytoskeletal rearrangements and cell extensions induced by the US3 kinase of an alphaherpesvirus are associated with enhanced spread. Proc Natl Acad Sci U SA 2005; 102: 8990–8995
  • Pol J M, van Dijk J E, Wensvoort G, Terpstra C. Pathological, ultrastructural, and immunohistochemical changes caused by Lelystad virus in experimentally induced infections of mystery swine disease (synonym: porcine epidemic abortion and respiratory syndrome (PEARS)). Vet Q 1991; 13: 137–143
  • Gong D, Yang R, Munir K M, Horenstein R B, Shuldiner A R. New progress in adipocytokine research. Curr Opin Endocrinol Diabetes 2003; 10: 115–121
  • Kim J K, Fahad A M, Shanmukhappa K, Kapil S. Defining the cellular target(s) of porcine reproductive and respiratory syndrome virus blocking monoclonal antibody 7G10. J Virol 2006; 80: 689–696

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.