107
Views
10
CrossRef citations to date
0
Altmetric
Research Article

Endothelin-1 Up-Regulates p115RhoGEF in Embryonic Rat Cardiomyocytes During the Hypertrophic Response

, , , , , , & show all
Pages 265-283 | Published online: 20 Oct 2008

REFERENCES

  • Sugden P H, Clerk A. Endothelin signalling in the cardiac myocyte and its pathophysiological relevance. Curr Vasc Pharmacol 2005; 3: 343–351
  • Dorn G W.I.I, Force T. Protein kinase cascades in the regulation of cardiac hypertrophy. J Clin Invest 2005; 115: 527–537
  • Ponicke K, Heinroth-Hoffmann I, Becker K, Brodde O E. Trophic effect of angiotensin II in neonatal rat cardiomyocytes: Role of endothelin-1 and non-myocyte cells. BrJ Pharmacol 1997; 121: 118–124
  • Gohla A, Offermanns S, Wilkie T M, Schultz G. Differential involvement of Gα12 and Gα13 in receptor-mediated stress fiber formation. J Biol Chem 1999; 274: 17901–17907
  • Hersch E, Huang J, Grider J R, Murthy K S. Gq/G13 signaling by ET-1 in smooth muscle: MYPT1 phosphorylation via ETA and CPI-17 dephosphorylation via ETB. Am J Physiol Cell Physiol 2004; 287: C1209–1218
  • Vogt S, Grosse R, Schultz G, Offermanns S. Receptor-dependent RhoA activation in G12/G13-deficient cells: Genetic evidence for an involvement of Gq/G11. J Biol Chem 2003; 278: 28743–28749
  • Sah V P, Hoshijima M, Chien K R, Brown J H. Rho is required for Gαq and α1-adrenergic receptor signaling in cardiomyocytes. Dissociation of Ras and Rho pathways. J Biol Chem 1996; 271: 31185–31190
  • Hall A. G proteins and small GTPases: Distant relatives keep in touch. Science 1998; 279: 509–514
  • Stam J C, Collard J G, The D H. protein family, exchange factors for Rho-like GTPases. Prog Mol Subcell Biol 1999; 22: 51–83
  • Rossman K L, Der C J, Sondek J. GEF means go: Turning on RHO GTPases with guanine nucleotide-exchange factors. Nat Rev Mol Cell Biol 2005; 6: 167–180
  • Hart M, Jiang X, Kozasa T, Roscoe W, Singer W D, Gilman A G, Sternweis P C, Bollag G. Direct stimulation of the guanine nucleotide exchange activity of p115RhoGEF by Gα13. Science 1998; 280: 2112–2114
  • Kozasa T, Jiang X, Hart M J, Sternweis P M, Singer W D, Gilman A G, Bollag G, Sternweis P C. p115RhoGEF, a GTPase activating protein for Gα12 and Gα13. Science 1998; 280: 2109–2111
  • Fukuhara S, Chikumi H, Gutkind J S. RGS-containing RhoGEFs: the missing link between transforming G proteins and Rho?. Oncogene 2001; 20: 1661–1668
  • Suzuki N, Nakamura S, Mano H, Kozasa T. Gα12 activates Rho GTPase through tyrosine-phosphorylated leukemia-associated RhoGEF. Proc Natl Acad SciUSA 2003; 100: 733–738
  • Lutz S, Freichel-Blomquist A, Yang Y, Rumenapp U, Jakobs K H, Schmidt M, Wieland T. The guanine nucleotide exchange factor p63RhoGEF, a specific link between Gq/11-coupled receptor signaling and RhoA. J Biol Chem 2005; 280: 11134–11139
  • Ying Z, Jin L, Palmer T, Webb R C, Angiotensin I I. up-regulates the leukemia-associated Rho guanine nucleotide exchange factor (RhoGEF), a regulator of G protein signaling domain-containing RhoGEF, in vascular smooth muscle cells. Mol Pharmacol 2006; 69: 932–940
  • Hilal-Dandan R, Means C K, Gustafsson B, Morisette M R, Adams J W, Brunton L L, Heller Brown J. Lysophosphatidic acid induces hypertrophy of neonatal cardiac myocytes via activation of Gi and Rho. J Mol Cell Cardiol 2004; 36: 481–493
  • Yamazaki J, Katoh H, Yamaguchi Y, Negishi M. Two G12 family G proteins, Gα12 and Gα13, show different subcellular localization. Biochem Biophys Res Comm 2005; 332: 782–786
  • Souchet M, Portales-Casamar E, Mazurais D, Schmidt S, Leger I, Javre J L, Robert P, Berrebi-Bertrand I, Bril A, Gout B, Debant A, Calmels T P. Human p63RhoGEF, a novel RhoA-specific guanine nucleotide exchange factor, is localized in cardiac sarcomere. J Cell Sci 2002; 115: 629–640
  • Lutz S, Freichel-Blomquist A, Rumenapp U, Schmidt M, Jakobs K H, Wieland T. p63RhoGEF and GEFT are Rho-specific guanine nucleotide exchange factors encoded by the same gene. Naunyn Schmiedebergs Arch Pharmacol 2004; 369: 540–546
  • Kawanabe Y, Okamoto Y, Nozaki K, Hashimoto N, Miwa S, Masaki T. Molecular mechanism for endothelin-1-induced stress-fiber formation: Analysis of G proteins using a mutant endothelinA receptor. Mol Pharmacol 2002; 61: 277–284
  • Kuwahara K, Saito Y, Nakagawa O, Kishimoto I, Harada M, Ogawa E, Miyamoto Y, Hamanaka I, Kajiyama N, Takahashi N, Izumi T, Kawakami R, Tamura N, Ogawa Y, Nakao K. The effects of the selective ROCK inhibitor, Y27632, on ET-1-induced hypertrophic response in neonatal rat cardiac myocytes—Possible involvement of Rho/ROCK pathway in cardiac muscle cell hypertrophy. FEBS Lett 1999; 452: 314–318
  • Ceccarelli F, Scavuzzo M C, Giusti L, Bigini G, Costa B, Carnicelli V, Zucchi R, Lucacchini A, Mazzoni M R. ETA receptor-mediated Ca2 + mobilisation in H9c2 cardiac cells. Biochem Pharmacol 2003; 65: 783–793
  • Giusti L, Gargini C, Ceccarelli F, Bacci M, Italiani P, Mazzoni M R. Modulation of endothelin-A receptor, Gα subunit, and RGS2 expression during H9c2 cardiomyoblast differentiation. J Recept Signal Transduct Res 2004; 24: 297–317
  • Brostrom M A, Reilly B A, Wilson F J, Brostrom C O. Vasopressin-induced hypertrophy in H9c2 heart-derived myocytes. IntJ Biochem Cell Biol 2000; 32: 993–1006
  • Clerk A, Pham F H, Fuller S J, Sahai E, Aktories K, Marais R, Marshall C, Sugden P H. Regulation of mitogen-activated protein kinases in cardiac myocytes through the small G protein Rac1. Mol Cell Biol 2001; 21: 1173–1184
  • Ren J, Fang C X. Small guanine nucleotide-binding protein Rho and myocardial function. Acta Pharmacol Sin 2005; 26: 279–285
  • Budzyn K, Marley P D, Sobey C G. Targeting Rho and Rho-kinase in the treatment of cardiovascular disease. Trends Pharmacol Sci 2006; 27: 97–104
  • Clerk A, Sugden P H. Small guanine nucleotide-binding proteins and myocardial hypertrophy. Circ Res 2000; 86: 1019–1023
  • Bhattacharyya R, Wedegaertner P B. Gα13 requires palmitoylation for plasma membrane localization, Rho-dependent signaling, and promotion of p115-RhoGEF membrane binding. J Biol Chem 2000; 275: 14992–14999
  • Sugden P H. An overview of endothelin signaling in the cardiac myocyte. J Mol Cell Cardiol 2003; 35: 871–886
  • Appert-Collin A, Cotecchia S, Nenniger-Tosato M, Pedrazzini T, Diviani D. The A-kinase anchoring protein (AKAP)-Lbc-signaling complex mediates alpha1 adrenergic receptor-induced cardiomyocyte hypertrophy. Proc Natl Acad SciUSA 2007; 104: 10140–10145
  • Hoshijima M, Sah V P, Wang Y, Chien K R, Brown J H. The low molecular weight GTPase Rho regulates myofibril formation and organization in neonatal rat ventricular myocytes. J Biol Chem 1998; 273: 7725–7730
  • Grounds H R, Ng D CH, Bogoyevitch M A. Small G-protein Rho is involved in the maintenance of cardiac myocyte morphology. J Cell Biochem 2005; 95: 529–542
  • Brown J H, Del Re D P, Sussman M A. The Rac and Rho hall of fame: A decade of hypertrophic signaling hits. Circ Res 2006; 98: 730–742

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.