215
Views
18
CrossRef citations to date
0
Altmetric
Research Article

TGF-β1/Smad7 Signaling Stimulates Renal Tubulointerstitial Fibrosis Induced by AAI

, , , , , & show all
Pages 413-428 | Published online: 10 Oct 2008

REFERENCES

  • Shibutani S, Dong H, Suzuki N, Ueda S, Miller F, Grollman A P. Selective toxicity of aristolochic acids I and II. Drug Metab Dispos 2007; 35: 1217–1222
  • Rastaldi M P. Epithelial-mesenchymal transition and its implications for the development of renal tubulointerstitial fibrosis. J Nephrol 2006; 19: 407–412
  • Massague J. The transforming growth factor-β family. Annu Rev Cell Biol 1990; 6: 597–641
  • Yang J, Liu Y. Dissection of key events in tubular epithelial to myofibroblast transition and its implications in renal interstitial fibrosis. Am. J. Pathol 2001; 159: 1465–1475
  • Zeisberg M, Maeshima Y, Mosterman B, Kalluri R. Renal fibrosis: Extracellular matrix microenvironment regulates migratory behavior of activated tubular epithelial cells. Am J Pathol 2002; 160: 2001–2008
  • Ten Dijke P, Goumans M J, Itoh F, Itoh S. Regulation of cell proliferation by Smad proteins. J Cell Physiol 2002; 191: 1–16
  • Nakao A, Afrakhte M A, Moren A, Nakayama T, Christian J L, Heuchel R, Itoh S, Kawabata M, Heldin N E, Heldin C H, Dijke P T. Identification of Smad7, a TGFβ-inducible antagonist of TGF-β signaling. Nature 1997; 389: 631–635
  • Zhang X, Yang J, Li Y, Liu Y. Both SP1 and Smad participate in mediating TGF-β1-induced HGF receptor expression in renal epithelial cells. Am J Physiol Renal Physiol 2005; 288: 16–26
  • Goto Y, Manabe N, Uchio-Yamada K, Yamaguchi-Yamada M, Inoue N, Yamamoto Y, Ogura A, Nagano N, Miyamoto H. Augmented cytoplasmic Smad4 induces acceleration of TGF-β1 signaling in renal tubulointerstitial cells of hereditary nephrotic ICGN mice with chronic renal fibrosis; possible role for myofibroblastic differentiation. Cell Tissue Res 2004; 315: 209–221
  • Callahan J F, Burgess J L, Fornwald J A, Gaster L M, Harling J D, Harrington F P, Heer J, Kwon C, Lehr R, Mathur A, Olson B A, Weinstock J, Laping N J. Identification of novel inhibitors of the transforming growth factor beta1 (TGF-beta1) type 1 receptor (ALK5). J Med Chem 2002; 45: 999–1001
  • Laping N J, Grygielko E, Mathur A, Butter S, Bomberger J, Tweed C, Martin W, Fornwald J, Lehr R, Harling J, Gaster L, Callahan J F, Olson B A. Inhibition of transforming growth factor (TGF)-beta1-induced extracellular matrix with a novel inhibitor of the TGF-beta type I receptor kinase activity: SB-431542. Mol Pharmacol 2002; 62: 58–64
  • Denissova N G, Pouponnot C, Long J, He D, Liu F. Transforming growth factor β-inducible independent binding of SMAD to the Smad7 promoter. PNAS 2000; 97: 6397–6402
  • Watabe T, Nishihara A, Mishima K, Yamashita J, Shimizu K, Miyazawa K, Nishikawa S, Miyazono K. TGF-β receptor kinase inhibitor enhances growth and integrity of embryonic stem cell−derived endothelial cells. J Cell Biol 2003; 163: 1303–1311
  • Strutz F, Okada H, Lo C W, Danoff T, Carone R L, Tomaszewski J E, Neilson E G. Identification and characterization of a fibroblast maker: FSP1. J Cell 1995; 1320: 393–405
  • Ng Y Y, Huang T P, Yang W C, Chen Z P, Yang A H, Mu W, Nikolic-Paterson D J, Atkins R C, Lan H Y. Tubular epithelial-myofibroblast transdifferentiation in progressive tubulointerstitial fibrosis in 5/6 nephrectomized rats. Kidney Int 1998; 54: 864–876
  • Phillips A O, Steadman R, Morrisey K, Williams J D. Polarity of stimulation and secretion of transforming growth factor-β1 by cultured proximal tubular cells. Am J Pathol 1997; 150: 1101–1111
  • Strutz F, Zeisberg M, Ziyadeh F N, Yang C Q, Kalluri R, Müller G A, Neilson E G. Role of basic fibroblast growth factor-2 in epithelial-mesenchymal transformation. Kidney Int 2002; 61: 1714–1728
  • Gao R T, Zheng F L, Liu Y X, Zheng D X, Li X M, Bo Y H, Liu Y. Aristolochic acid I-induced apoptosis in LLC-PK1 cells and amelioration of the apoptotic damage by calcium antagonist. Chinese Med J 2000; 113: 418–424
  • Chai Q, Krag S, Chai S. Localization and phenotypical characterization of collagen-producing cells in TGF-β1-induced renal interstitial fibrosis. Histochem Cell Biol 2003; 119: 267–280
  • Lan H Y. Tubular epithelial-myofibroblast transdifferentiation mechanisms in proximal tubule cells. Curr Opin Nephrol Hypertens 2003; 12: 25–29
  • Border W A, Noble N A. TGF-beta in kidney fibrosis: A target for gene therapy. Kidney Int 1997; 51: 1388–1396
  • Heldin C H, Miyazono K, ten Dijke P. TGF-beta signalling from cell membrane to nucleus through SMAD proteins. Nature 1997; 390: 465–471
  • Lan X. Regulation of Smad activity. Biochim Biophys Acta 2006; 1759: 503–513
  • Massague J. How cells read TGF-beta signals. Nat Rev Mol Cell Biol 2000; 1: 169–178
  • Attisano L, Wrana J L. Signal transduction by the TGF-beta superfamily. Science 2002; 296: 1646–1647
  • Gersdorff G, Susztak K, Rezvani F, Bitzer M, Liang D, Böttinger E P. Smad3 and Smad4 mediate transcriptional activation of the human Smad7 promoter by transforming growth factor beta. J Biol Chem 2000; 275: 11320–11326
  • Flanders K C. Smad3 as a mediator of the fibrotic response. Int J Exp Pathol 2004; 85: 47–64
  • Piek E, Ju W J, Heyer J, Escalante-Alcalde D, Stewart C L, Weinstein M, Deng C X, Kucherlapati R, Böttinger E P, Roberts A B. Functional characterization of transforming growth factor beta signaling in smad2- and smad3-deficient fibroblasts. J Biol Chem 2001; 276: 19945–19953
  • Callahan J F, Burgess J L, Fornwald J A, Gaster L M, Harling J D, Harrington F P, Heer J, Kwon C, Lehr R, Mathur A, Olson B A, Weinstock J, Laping N J. Identification of novel inhibitors of the transforming growth factor β 1 (TGF-β 1) type I receptor (ALK5). J Med Chem 2002; 45: 999–1001
  • Inman G J, Nicolas F J, Callahan J F, Harling J D, Gaster L M, Reith A D, Laping N J, Hill C S. SB-431542 is a potent and specific inhibitor of transforming growth factor-beta superfamily type I activin receptor-like kinase (ALK) receptors ALK4, ALK5, and ALK7. Mol. Pharmacol 2002; 62: 65–74
  • Bonniaud P, Margetts P J, Kolb M, Schroeder J A, Kapoun A M, Damm D, Murphy A, Chakravarty S, Dugar S, Higgins L, Protter A A, Gauldie J. Progressive transforming growth factorβ1-induced lung fibrosis is blocked by an orally active ALK5 kinase inhibitor. Am J Respir Crit Care Med 2005; 171: 889–898
  • de Gouville A C, Boullay V, Krysa G, Pilot J, Brusq J M, Loriolle F, Gauthier J M, Papworth S A, Laroze A, Gellibert F, Huet S. Inhibition of TGF-β signaling by an ALK5 inhibitor protects rats from dimethylnitrosamine-induced liver fibrosis. Br. J. Pharmacol 2005; 145: 166–177
  • Hayashi H, Abdollah S, Qiu Y, Cai J, Xu Y Y, Grinnell B W, Richardson M A, Topper J N, Gimbrone M A, Jr, Wrana J L, Falb D. The MAD-related protein Smad7 associates with the TGFbeta receptor and functions as an antagonist of TGF beta signaling. Cell 1997; 89: 1165–1173
  • Kavsak P, Rasmussen P K, Causing C G, Bonni S, Zhu H, Thomsen G H, Wrana J L. Smad7 binds to Smurf2 to form an E3 ubiquitin ligase that targets the TGF beta for degradation. Mol Cell 2000; 6: 1365–1375
  • Hata A, Lagna G, Massagué J, Hemmati-Brivanlou A. Smad6 inhibits BMP/Smad1 signaling by specifically competing with the Smad4 tumor suppressor. Genes Dev 1998; 12: 186–197
  • Li J H, Zhu H J, Huang X R, Lai K N, Johnson R J, Lan H Y. Smad7 Inhibits Fibrotic Effect of TGF-β on Renal Tubular Epithelial Cells by Blocking Smad2 Activation. J Am Soc Nephrol 2002; 13: 1464–1472
  • Quan T H, He T Y, Voorhees J J, Fisher G J. Ultraviolet irradiation induces Smad7 via induction of transcription factor AP-1 in human skin fibroblasts. J Biol Chem 2005; 9: 8079–8085

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.