68
Views
5
CrossRef citations to date
0
Altmetric
Research Article

PI(3,4,5)P3 potentiates phospholipase C-β activity

, , &
Pages 52-62 | Received 04 Oct 2008, Accepted 07 Jan 2009, Published online: 01 Feb 2009

References

  • Rhee S-G. Regulation of phosphoinositide-specific phospholipase C. Annu Rev Biochem (2001), 70, 281–312.
  • Harden TK, Sondek J. Regulation of phospholipase C isozymes by ras superfamily GTPases. Annu Rev Pharmacol Toxicol (2006), 46, 355–379.
  • Wang T, Pentyala S, Rebecchi MJ, Scarlata S. Differential association of the pleckstrin homology domains of phospholipases C-β1, C-β2, and C-δ1 with lipid bilayers and the βγ subunits of heterotrimeric G proteins. Biochemistry (1999), 38, 1517–1524.
  • Jezyk MR, Snyder JT, Gershberg S, Worthylake DK, Harden TK, Sondek J. Crystal structure of Rac1 bound to its effector phospholipase C-β2. Nat Struct Mol Biol (2006), 13, 1135–40.
  • Kim CG, Park D, Rhee SG. The role of the carboxyl terminal basic amino acids in Gqα-dependent activation, particulate association, and nuclear localization of phospholipase C-β1. J Biol Chem (1996), 271, 21187–21192.
  • Zhang Y, Vogel WK, McCullar JS, Greenwood JA, Filtz TM. Phospholipase C-β3 and -β1 form homodimers, but not heterodimers, through catalytic and carboxyl-terminal domains. Mol Pharmacol (2006), 70, 860–868.
  • Singer AU, Waldo GL, Harden TK, Sondek J. A unique fold of phospholipase C-β mediates dimerization and interaction with Gαq. Nat Struct Biol (2002), 9, 32–36.
  • Ilkaeva O, Kinch LN, Paulssen RH, Ross EM. Mutations in the carboxyl-terminal domain of phospholipase C-β1 delineate the dimer interface and a potential Galphaq interaction site. J Biol Chem (2002), 277, 4294–4300.
  • Foster FM, Traer CJ, Abraham SM, Fry MJ. The phosphoinositide (PI) 3-kinase family. J Cell Sci (2003), 116, 3037–3040.
  • Blazer-Yost BL, Nofziger C. Phosphoinositide lipid second messengers: New paradigms for transepithelial signal transduction. Pflugers Arch (2005), 450, 75–82.
  • Rameh LE, Cantley LC. The role of phosphoinositide 3-kinase lipid products in cell function. J Biol Chem (1999), 274, 8347–8350.
  • McCullar JS, Malencik DA, Vogel WK, Crofoot KM, Anderson SR, Filtz TM. Calmodulin potentiates Gβγ activation of phospholipase C-β3. Biochem Pharmacol (2007), 73, 270–278.
  • Serunian LA, Haber MT, Fukui T, Kim JW, Rhee SG, Lowenstein JM, Cantley LC. Polyphosphoinositides produced by phosphatidylinositol 3-kinase are poor substrates for phospholipases C from rat liver and bovine brain. J Biol Chem (1989), 264, 17809–17815.
  • Cook JA, August A, Henderson AJ. Recruitment of phosphatidylinositol 3-kinase to CD28 inhibits HIV transcription by a Tat-dependent mechanism. J Immunol (2002), 169, 254–260.
  • Kwon Y, Hofmann T, Montell C. Integration of phosphoinositide- and calmodulin-mediated regulation of TRPC6. Mol Cell (2007), 25, 491–503.
  • Kozasa T. Purification of G protein subunits from Sf9 insect cells using hexahistidine-tagged α and βγ subunits. Methods Mol Biol (2004), 237, 21–38.
  • Bishop CV, Stormshak F. Nongenomic action of progesterone inhibits oxytocin-induced phosphoinositide hydrolysis and prostaglandin F2alpha secretion in the ovine endometrium. Endocrinology (2006), 147, 937–942.
  • Kim D, Jun KS, Lee SB, Kang N-G, Min DS, Kim Y-H, Ryu SH, Suh P-G, Shin H-S. Phospholipase C isozymes selectively couple to specific neurotransmitter receptors. Nature (1997), 389, 290–293.
  • Zhong M, Yang M, Sanborn BM. Extracellular signal-regulated kinase 1/2 activation by myometrial oxytocin receptor involves GαqGβγ and epidermal growth factor receptor tyrosine kinase activation. Endocrinology (2003), 144, 2947–2956.
  • Rameh LE, Cantley LC. The role of phosphoinositide 3-kinase lipid products in cell function. Biol Chem (1999), 274, 8347–8350.
  • Kelley GG, Kaproth-Joslin KA, Reks SE, Smrcka AV, Wojcikiewicz RJ. G-protein-coupled receptor agonists activate endogenous phospholipase Cϵ and phospholipase Cβ3 in a temporally distinct manner. J Biol Chem (2006), 281, 2639–2648.
  • Nakanishi S, Kakita S, Takahashi I, Kawahara K, Tsukuda E, Sano T, Yamada K, Yoshida M, Kase H, Matsuda Y, et al.Wortmannin, a microbial product inhibitor of myosin light chain kinase. J Biol Chem (1992), 267, 2157–2163.
  • Egawa K, Sharma PM, Nakashima N, Huang Y, Huver E, Boss GR, Olefsky JM. Membrane-targeted phosphatidylinositol 3-kinase mimics insulin actions and induces a state of cellular insulin resistance. J Biol Chem (1999), 274, 14306–14314.
  • Lemmon MA. Pleckstrin homology (PH) domains and phosphoinositides. Biochem Soc Symp (2007), 81–93.
  • Bae YS, Cantley LG, Chen CS, Kim SR, Kwon KS, Rhee SG. Activation of phospholipase C-γ by phosphatidylinositol 3,4,5-trisphosphate. J Biol Chem (1998), 273, 4465–4469.
  • Jhon D, Lee H, Park D, Lee C, Lee K, Yoo O, Rhee S. Cloning, sequencing, purification, and Gq-dependent activation of phospholipase C-β3. J Biol Chem (1993), 268, 6654–6661.
  • Young KW, Nash MS, Challiss RA, Nahorski SR. Role of Ca2+ feedback on single cell inositol 1,4,5-trisphosphate oscillations mediated by G-protein-coupled receptors. J Biol Chem (2003), 278, 20753–20760.
  • Wojcikiewicz RJH, Tobin AB, Nahorski SR. Muscarinic receptor-mediated inositol 1,4,5-trisphosphate formation in SH-SY5Y neuroblastoma cells is regulated acutely by cytosolic Ca2+ and by rapid desensitization. J Neurochem (1994), 63, 177–185.
  • Vlahos CJ, Matter WF, Hui KY, Brown RF. A specific inhibitor of phosphatidylinositol 3-kinase, 2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one (LY294002). J Biol Chem (1994), 269, 5241–5248.
  • Vlahos CJ, Matter WF, Brown RF, Traynor-Kaplan AE, Heyworth PG, Prossnitz ER, Ye RD, Marder P, Schelm JA, Rothfuss KJ, et al.Investigation of neutrophil signal transduction using a specific inhibitor of phosphatidylinositol 3-kinase. J Immunol (1995), 154, 2413–2422.
  • Cheatham B, Vlahos CJ, Cheatham L, Wang L, Blenis J, Kahn CR. Phosphatidylinositol 3-kinase activation is required for insulin stimulation of pp70 S6 kinase, DNA synthesis, and glucose transporter translocation. Mol Cell Biol (1994), 14, 4902–4911.
  • Tolloczko B, Turkewitsch P, Al-Chalabi M, Martin JG. LY-294002 [2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one] affects calcium signaling in airway smooth muscle cells independently of phosphoinositide 3-kinase inhibition. J Pharmacol Exp Ther (2004), 311, 787–793.
  • Razzini G, Brancaccio A, Lemmon MA, Guarnieri S, Falasca M. The role of the pleckstrin homology domain in membrane targeting and activation of phospholipase Cbeta(1). J Biol Chem (2000), 275, 14873–14881.
  • Ishii M, Inanobe A, Kurachi Y. PIP3 inhibition of RGS protein and its reversal by Ca2+/calmodulin mediate voltage-dependent control of the G protein cycle in a cardiac K+ channel. Proc Natl Acad Sci U S A (2002), 99, 4325–4330.
  • Popov SG, Krishna UM, Falck JR, Wilkie TR. Ca2+/Calmodulin reverses phosphatidylinositol 3,4,5-triphosphate-dependent inhibition of regulators of G protein-signaling GTPase-activating protein activity. J Biol Chem (2000), 275, 18962–18968.
  • Garcia P, Gupta R, Shah S, Morris AJ, Rudge SA, Scarlata S, Petrova V, McLaughlin S, Rebecchi MJ. The Pleckstrin homology domain of phospholipase C-δ1 binds with high affinity to phosphatidyl 4,5-bisphosphate in bilayer membranes. Biochemistry (1995), 34, 16228–16234.
  • Singh SM, Murray D. Molecular modeling of the membrane targeting of phospholipase C pleckstrin homology domains. Protein Sci (2003), 12, 1934–1953.
  • Heo WD, Inoue T, Park WS, Kim ML, Park BO, Wandless TJ, Meyer T. PI(3,4,5)P3 and PI(4,5)P2 lipids target proteins with polybasic clusters to the plasma membrane. Science (2006), 314, 1458–1461.
  • Manna D, Bhardwaj N, Vora MS, Stahelin RV, Lu H, Cho W. Differential roles of phosphatidylserine, PtdIns(4,5)P2, and PtdIns(3,4,5)P3 in plasma membrane targeting of C2 domains.Molecular dynamics simulation, membrane binding, and cell translocation studies of the PKCalpha C2 domain. J Biol Chem (2008), 283, 26047–26058.
  • Falasca M, Logan SK, Lehto VP, Baccante G, Lemmon MA, Schlessinger J. Activation of phospholipase Cγ by PI 3-kinase-induced PH domain-mediated membrane targeting. Embo J (1998), 17, 414–422.
  • Xie Z, Singleton PA, Bourguignon LY, Bikle DD. Calcium- induced human keratinocyte differentiation requires src- and fyn-mediated phosphatidylinositol 3-kinase-dependent activation of phospholipase C-γ1. Mol Biol Cell (2005), 16, 3236–3246.
  • Litosch I. Regulation of phospholipase C-beta(1) activity by phosphatidic acid. Biochemistry (2000), 39, 7736–7743.
  • Ross EM, Mateu D, Gomes AV, Arana C, Tran T, Litosch I. Structural determinants for phosphatidic acid regulation of phospholipase C-beta1. J Biol Chem (2006), 281, 33087–33094.
  • Northcott CA, Hayflick J, Watts SW. Upregulated function of phosphatidylinositol-3-kinase in genetically hypertensive rats: a moderator of arterial hypercontractility. Clin Exp Pharmacol Physiol (2005), 32, 851–858.
  • Su X, Smolock EM, Marcel KN, Moreland RS. Phosphatidylinositol 3-kinase modulates vascular smooth muscle contraction by calcium and myosin light chain phosphorylation-independent and-dependent pathways. Am J Physiol Heart Circ Physiol (2004), 286, H657–666.
  • Murthy KS, Makhlouf GM. Functional characterization of phosphoinositide-specific phospholipase C-β1 and -β3 in intestinal smooth muscle. Am J Physiol (1995), 269, C969–78.
  • Murthy KS, Makhlouf GM. Adenosine A1 receptor-mediated activation of phospholipase C-β3 in intestinal muscle: Dual requirement for alpha and beta gamma subunits of Gi3. Mol Pharmacol (1995), 47, 1172–1179.
  • Lian L, Wang Y, Draznin J, Eslin D, Bennett JS, Poncz M, Wu D, Abrams CS. The relative role of PLCβ and PI3Kγ in platelet activation. Blood (2005), 106, 110–117.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.