380
Views
24
CrossRef citations to date
0
Altmetric
Review Article

Receptor-mediated tumor targeting with radiopeptides

Part 1. General principles and methods

&
Pages 1-37 | Received 30 Dec 2008, Accepted 04 Jan 2009, Published online: 01 Feb 2009

References

  • Abd-Elgaliel WR, Gallazzi F, Garrison JC, Rold TL, Sieckman GL, Figueroa SD, Hoffman TJ, Lever SZ. Design, synthesis, and biological evaluation of an antagonist-bombesin analogue as targeting vector. Bioconjug Chem (2008), 19, 2040–2048.
  • Aime S, Dastru W, Crich SG, Gianolio E, Mainero V. Innovative magnetic resonance imaging diagnostic agents based on paramagnetic Gd(III) complexes. Biopolymers (2002), 66, 419–428.
  • Alberto R. [Tc(CO)3]+ chemistry: A promising new concept for SPET? For. Eur J Nucl Med Mol Imaging (2003), 30, 1299–1302.
  • Alberto R, Pak JK, van Staveren D, Mundwiler S, Benny P. Mono-, bi-, or tridentate ligands? The labeling of peptides with 99mTc-carbonyls. Biopolymers (2004), 76, 324–333.
  • Alberto R, Schibli R, Egli A, Schubiger P, Abram U, TA K. A novel organometallic aqua complex of technetium for the labeling of biomolecules: synthesis of [99mTc(OH2)3(CO)3]+ from [99mTcO4]− in aqueous solution and its reaction with a bifunctional ligand. J Am Chem Soc (1998), 120, 7987–7988.
  • Allen BJ. Clinical trials of targeted alpha therapy for cancer. Rev Recent Clin Trials (2008), 3, 185–191.
  • Ametamey SM, Honer M, Schubiger PA. Molecular imaging with PET. Chem Rev (2008), 108, 1501–1516.
  • Anderson CJ, Wadas TJ, Wong EH, Weisman GR. Cross-bridged macrocyclic chelators for stable complexation of copper radionuclides for PET imaging. Q J Nucl Med Mol Imaging (2008), 52, 185–192.
  • Anderson CJ, Welch MJ. Radiometal-labeled agents (non-technetium) for diagnostic imaging. Chem Rev (1999), 99, 2219–2234.
  • Andersson H, Elgqvist J, Horvath G, Hultborn R, Jacobsson L, Jensen H, Karlsson B, Lindegren S, Palm S. Astatine-211-labeled antibodies for treatment of disseminated ovarian cancer: An overview of results in an ovarian tumor model. Clin Cancer Res (2003), 9, 3914S–3921S.
  • Antoch G, Bockisch A. Combined PET/MRI: A new dimension in whole-body oncology imaging? Eur J Nucl Med Mol Imaging (2008), Epub ahead of print.
  • Antunes P, Ginj M, Walter MA, Chen J, Reubi JC, Mäcke HR. Influence of different spacers on the biological profile of a DOTA-somatostatin analogue. Bioconjug Chem (2007), 18, 84–92.
  • Arano Y, Uezono T, Akizawa H, Ono M, Wakisaka K, Nakayama M, Sakahara H, Konishi J, Yokoyama A. Reassessment of diethylenetriaminepentaacetic acid (DTPA) as a chelating agent for indium-111 labeling of polypeptides using a newly synthesized monoreactive DTPA derivative. J Med Chem (1996), 39, 3451–3460.
  • Bagutti C, Stolz B, Albert R, Bruns C, Pless J, Eberle AN. [111In]-DTPA-labeled analogues of α-melanocyte-stimulating hormone for melanoma targeting: Receptor binding in vitro and in vivo. Int J Cancer (1994), 58, 749–755.
  • Bakker WH, Albert R, Bruns C, Breeman WA, Hofland LJ, Marbach P, Pless J, Pralet D, Stolz B, Koper JW, et al.[111In-DTPA-D-Phe1]-octreotide, a potential radiopharmaceutical for imaging of somatostatin receptor-positive tumors: Synthesis, radiolabeling and in vitro validation. Life Sci (1991), 49, 1583–1591.
  • Bakker WH, Breeman WA, Kwekkeboom DJ, De Jong LC, Krenning EP. Practical aspects of peptide receptor radionuclide therapy with [177Lu][DOTA0, Tyr3]octreotate. Q J Nucl Med Mol Imaging (2006), 50, 265–271.
  • Bander NH. Technology insight: Monoclonal antibody imaging of prostate cancer. Nat Clin Pract Urol (2006), 3, 216–225.
  • Bapst JP, Froidevaux S, Calame M, Tanner H, Eberle AN. Dimeric DOTA-α-melanocyte-stimulating hormone analogs: Synthesis and in vivo characteristics of radiopeptides with high in vitro activity. J Recept Signal Transduct (2007), 27, 383–409.
  • Bard DR, Knight CG, Page-Thomas DP. A chelating derivative of α-melanocyte stimulating hormone as a potential imaging agent for malignant melanoma. Br J Cancer (1990), 62, 919–922.
  • Barnard P, Bayly S, Betts H, Bonnitcha P, Christlieb M, Dilworth J, Holland J, Pascu S. Towards new copper based radiopharmaceuticals. Q J Nucl Med Mol Imaging (2008), 52, 174–184.
  • Bauer GE, Lindall AW, Lazarow A. The biosynthesis of C14- and H3-labeled insulin. Adv Tracer Methodol (1965), 2, 73–81.
  • Beck R, Seidl C, Pfost B, Morgenstern A, Bruchertseifer F, Baum H, Schwaiger M, Senekowitsch-Schmidtke R. 213Bi-radioimmunotherapy defeats early-stage disseminated gastric cancer in nude mice. Cancer Sci (2007), 98, 1215–1222.
  • Béhé M, Becker W, Gotthardt M, Angerstein C, Behr TM. Improved kinetic stability of DTPA-D-Glu as compared with conventional monofunctional DTPA in chelating indium and yttrium: Preclinical and initial clinical evaluation of radiometal labelled minigastrin derivatives. Eur J Nucl Med Mol Imaging (2003), 30, 1140–1146.
  • Béhé M, Behr TM. Cholecystokinin-B (CCK-B)/gastrin receptor targeting peptides for staging and therapy of medullary thyroid cancer and other CCK-B receptor expressing malignancies. Biopolymers (2002), 66, 399–418.
  • Behr TM, Béhé MP. Cholecystokinin-B/gastrin receptor-targeting peptides for staging and therapy of medullary thyroid cancer and other cholecystokinin-B receptor-expressing malignancies. Semin Nucl Med (2002), 32, 97–109.
  • Behr TM, Gotthardt M, Barth A, Béhé M. Imaging tumors with peptide-based radioligands. Q J Nucl Med (2001), 45, 189–200.
  • Behr TM, Gotthardt M, Becker W, Béhé M. Radioiodination of monoclonal antibodies, proteins and peptides for diagnosis and therapy. A review of standardized, reliable and safe procedures for clinical grade levels kBq to GBq in the Gottingen/Marburg experience. Nuklearmedizin (2002), 41, 71–79.
  • Berson SA, Yalow RS, Bauman A, Rothschild MA, Newerly K. Insulin-I131 metabolism in human subjects: Demonstration of insulin binding globulin in the circulation of insulin treated subjects. J Clin Invest (1956), 35, 170–190.
  • Bevilacqua A, Gelb RI, Hebard WB, Zompa LJ. Equilibrium and thermodynamic study of the aqueous complexation of 1,4,7-triazacyclononane-N,N’,N’’-triacetic acid with protons, alkaline-earth-metal cations, and copper. Inorg Chem (1987), 26, 2699–2706.
  • Bigott-Hennkens HM, Dannoon S, Lewis MR, Jurisson SS. In vitro receptor binding assays: General methods and considerations. Q J Nucl Med Mol Imaging (2008), 52, 245–253.
  • Bodei L, Kassis AI, Adelstein SJ, Mariani G. Radionuclide therapy with iodine-125 and other auger-electron-emitting radionuclides: Experimental models and clinical applications. Cancer Biother Radiopharm (2003), 18, 861–877.
  • Boerman OC, van Schaijk FG, Oyen WJG, Corstens FHM. Pretargeted radioimmunotherapy of cancer: Progress step by step. J Nucl Med (2003), 44, 400–411.
  • Bolton AE, Hunter WM. The labelling of proteins to high specific radioactivities by conjugation to a 125I-containing acylating agent. Biochem J (1973), 133, 529–539.
  • Bomanji JB. Radionuclide therapy. Clin Med (2006), 6, 249–253.
  • Borbas KE, Ferreira CS, Perkins A, Bruce JI, Missailidis S. Design and synthesis of mono- and multimeric targeted radiopharmaceuticals based on novel cyclen ligands coupled to anti-MUC1 aptamers for the diagnostic imaging and targeted radiotherapy of cancer. Bioconjug Chem (2007), 18, 1205–1212.
  • Boswell CA, Regino CA, Baidoo KE, Wong KJ, Bumb A, Xu H, Milenic DE, Kelley JA, Lai CC, Brechbiel MW. Synthesis of a cross-bridged cyclam derivative for peptide conjugation and 64Cu radiolabeling. Bioconjug Chem (2008), 19, 1476–1484.
  • Boswell CA, Regino CA, Baidoo KE, Wong KJ, Milenic DE, Kelley JA, Lai CC, Brechbiel MW. A novel side-bridged hybrid phosphonate/acetate pendant cyclam: Synthesis, characterization, and 64Cu small animal PET imaging. Bioorg Med Chem (2009), 17, 548–552.
  • Boswell CA, Sun X, Niu W, Weisman GR, Wong EH, Rheingold AL, Anderson CJ. Comparative in vivo stability of copper-64-labeled cross-bridged and conventional tetraazamacrocyclic complexes. J Med Chem (2004), 47, 1465–1474.
  • Bouziotis P, Psimadas D, Fani M, Gourni E, Loudos G, Xanthopoulos S, Archimandritis SC, Varvarigou AD. Radiolabeled biomolecules for early cancer detection and therapy via angiogenesistargeting. Nucl Instr Meth Phys Res A (2006), 569, 492–496.
  • Brazeau P, Vale W, Burgus R, Ling N, Butcher M, Rivier J, Guillemin R. Hypothalamic polypeptide that inhibits the secretion of immunoreactive pituitary growth hormone. Science (1973), 179, 77–79.
  • Brechbiel MW. Targeted alpha-therapy: Past, present, future? Dalton Trans (2007);4918–4928.
  • Brechbiel MW, Gansow OA. Backbone-substituted DTPA ligands for 90Y radioimmunotherapy. Bioconjug Chem (1991), 2, 187–194.
  • Brechbiel MW, Gansow OA, Atcher RW, Schlom J, Esteban J, Simpson D, Colcher D. Synthesis of 1-(p-isothiocyanatobenzyl) derivatives of DTPA and EDTA. Antibody labeling and tumor-imaging studies. Inorg Chem (1986), 25, 2771–2781.
  • Breeman WA, De Jong M, Visser TJ, Erion JL, Krenning EP. Optimising conditions for radiolabelling of DOTA-peptides with 90Y, 111In and 177Lu at high specific activities. Eur J Nucl Med Mol Imaging (2003), 30, 917–920.
  • Breeman WA, van der Wansem K, Bernard BF, van Gameren A, Erion JL, Visser TJ, Krenning EP, de Jong M. The addition of DTPA to [177Lu-DOTA0,Tyr3]octreotate prior to administration reduces rat skeleton uptake of radioactivity. Eur J Nucl Med Mol Imaging (2003), 30, 312–315.
  • Breeman WA, Verbruggen AM. The 68Ge/68Ga generator has high potential, but when can we use 68Ga-labelled tracers in clinical routine? Eur J Nucl Med Mol Imaging (2007), 34, 978–981.
  • Britz-Cunningham SH, Adelstein SJ. Molecular targeting with radionuclides: state of the science. J Nucl Med (2003), 44, 1945–1961.
  • Buchsbaum DJ. Imaging and therapy of tumors induced to express somatostatin receptor by gene transfer using radiolabeled peptides and single chain antibody constructs. Semin Nucl Med (2004), 34, 32–46.
  • Bugaj JE, Erion JL, Johnson MA, Schmidt MA, Srinivasan A. Radiotherapeutic efficacy of 153Sm-CMDTPA-Tyr3- octreotate in tumor-bearing rats. Nucl Med Biol (2001), 28, 327–334.
  • Buscombe JR, Bombardieri E. Imaging cancer using single photon techniques. Q J Nucl Med Mol Imaging (2005), 49, 121–131.
  • Butlin NG, Meares CF. Antibodies with infinite affinity: Origins and applications. Acc Chem Res (2006), 39, 780–787.
  • Cabbiness DK, Margerum DW. Macrocyclic effect on the stability of copper(II) tetramine complexes. J Am Chem Soc (1969), 91, 6540–6541.
  • Cai W, Zhang X, Wu Y, Chen X. A thiol-reactive 18F-labeling agent, N-[2-(4-18F-fluorobenzamido)ethyl]maleimide, and synthesis of RGD peptide-based tracer for PET imaging of αvβ3 integrin expression. J Nucl Med (2006), 47, 1172–1180.
  • Cantorias MV, Howell RC, Todaro L, Cyr JE, Berndorff D, Rogers RD, Francesconi LC. MO tripeptide diastereomers (M = 99/99mTc, Re): models to identify the structure of 99mTc peptide targeted radiopharmaceuticals. Inorg Chem (2007), 46, 7326–7340.
  • Cappelletti E, Lattuada L, Gianolio E, Aime S, Chen J, Linder K, Swenson R, Lantry L, Arunachalam T, Nunn A, Tweedle M. SAR of improved compounds for targeted radiotherapy of human solid tumors expressing gastrin releasing peptide receptors. J Pept Sci (2004), 10, 104.
  • Carlsson J, Forssell Aronsson E, Hietala SO, Stigbrand T, Tennvall J. Tumour therapy with radionuclides: Assessment of progress and problems. Radiother Oncol (2003), 66, 107–117.
  • Cescato R, Maina T, Nock B, Nikolopoulou A, Charalambidis D, Piccand V, Reubi JC. Bombesin receptor antagonists may be preferable to agonists for tumor targeting. J Nucl Med (2008), 49, 318–326.
  • Chappell LL, Ma D, Milenic DE, Garmestani K, Venditto V, Beitzel MP, Brechbiel MW. Synthesis and evaluation of novel bifunctional chelating agents based on 1,4,7,10-tetraazacyclododecane-N,N’,N”,N”’-tetraacetic acid for radiolabeling proteins. Nucl Med Biol (2003), 30, 581–595.
  • Chappell LL, Rogers BE, Khazaeli MB, Mayo MS, Buchsbaum DJ, Brechbiel MW. Improved synthesis of the bifunctional chelating agent 1,4,7,10-tetraaza-N-(1-carboxy-3-(4-nitrophenyl)propyl)-N’,N’’,N’’’-tris(acetic acid)cyclododecane (PA-DOTA). Bioorg Med Chem (1999), 7, 2313–2320.
  • Chen X, Park R, Shahinian AH, Tohme M, Khankaldyyan V, Bozorgzadeh MH, Bading JR, Moats R, Laug WE, Conti PS. 18F-labeled RGD peptide: Initial evaluation for imaging brain tumor angiogenesis. Nucl Med Biol (2004), 31, 179–189.
  • Cherel M, Davodeau F, Kraeber-Bodere F, Chatal JF. Current status and perspectives in alpha radioimmunotherapy. Q J Nucl Med Mol Imaging (2006), 50, 322–329.
  • Cowley AR, Dilworth JR, Donnelly PS, Heslop JM, Ratcliffe SJ. Bifunctional chelators for copper radiopharmaceuticals: The synthesis of [Cu(ATSM)-amino acid] and [Cu(ATSM)-octreotide] conjugates. Dalton Trans (2007), 209–217.
  • Cox JPL, Jankowski KJ, Kataky R, Parker D, Beeley NRA, Boyce BA, Eaton MAW, Millar K, Millican AT, Harrison A, Walker C. Synthesis of a kinetically stable yttrium-90 labelled macrocycle-antibody conjugate. J Chem Soc Chem Commun (1989), 797–798.
  • Craig AS, Helps IM, Jankowski KJ, Parker D, Beeley NRA, Boyce BA, Eaton MAW, Millican AT, Millar K, Phipps A, Rhind SK, Harrison A, Walker C. Towards tumour imaging with indium-111 labelled macrocycle-antibody conjugates. J Chem Soc Chem Commun (1989), 794–796.
  • De Visser M, Verwijnen SM, de Jong M. Update: Improvement strategies for peptide receptor scintigraphy and radionuclide therapy. Cancer Biother Radiopharm (2008), 23, 137–157.
  • Decristoforo C, Mather SJ. Preparation, 99mTc-labeling, and in vitro characterization of HYNIC and N3S modified RC-160 and [Tyr3]octreotide. Bioconjug Chem (1999), 10, 431–438.
  • Decristoforo C, Mather SJ. The influence of chelator on the pharmacokinetics of 99mTc-labelled peptides. Q J Nucl Med (2002), 46, 195–205.
  • DeRiemer LH, Meares CF, Goodwin DA, Diamanti CI. BLEDTA: Tumor localization by a bleomycin analogue containing a metal-chelating group. J Med Chem (1979), 22, 1019–1023.
  • Deshpande SV, DeNardo SJ, Kukis DL, Moi MK, McCall MJ, DeNardo GL, Meares CF. Yttrium-90-labeled monoclonal antibody for therapy: Labeling by a new macrocyclic bifunctional chelating agent. J Nucl Med (1990), 31, 473–479.
  • Deshpande SV, DeNardo SJ, Meares CF, McCall MJ, Adams GP, Moi MK, DeNardo GL. Copper-67-labeled monoclonal antibody Lym-1, a potential radiopharmaceutical for cancer therapy: Labeling and biodistribution in RAJI tumored mice. J Nucl Med (1988), 29, 217–225.
  • Desreux JF. Nuclear magnetic resonance spectroscopy of lanthanide complexes with a tetraacetic tetraaza macrocycle. Unusual conformation properties. Inorg Chem (1980), 19, 1319–1324.
  • Drozdz R, Baker BI, Zeller A, Eberle AN. Synthesis and biological activity of highly tritiated rat/human melanin-concentrating hormone. Ann N Y Acad Sci (1993), 680, 489–492.
  • Eberle AN. The Melanotropins. Chemistry, Physiology and Mechanisms of Action. Basel: Karger, (1988).
  • Eberle AN, Froidevaux S. Radiolabeled α-melanocyte-stimulating hormone analogs for receptor-mediated targeting of melanoma: From tritium to indium. J Mol Recognit (2003), 16, 248–254.
  • Eberle AN, Hübscher W. Melanotropin labelled at its tyrosine2 residue: Synthesis and biological activities of 3’-iodotyrosine2-, 3’-125iodotyrosine2, 3’5’-diiodotyrosine2- and (3’,5’-3H2)-tyrosine2-α-melanotropin, and of related peptides. Helv Chim Acta (1979), 62, 2460–2483.
  • Eberle AN, Verin VJ, Solca F, Siegrist W, Küenlin C, Bagutti C, Stutz S, Girard J. Biologically active monoiodinated α-MSH derivatives for receptor binding studies using human melanoma cells. J Recept Res (1991), 11, 311–322.
  • Eberle AN, Zeller A. Tritiation of peptides to high specific radioactivity. Part 1. Synthesis and biological properties of [13-(3H4)norvaline]-α-MSH and of [2,23-bis((3H2)tyrosine)]-ACTH(1-24). Helv Chim Acta (1985), 68, 1880–1892.
  • Egli A, Alberto R, Tannahill L, Schibli R, Abram U, Schaffland A, Waibel R, Tourwé D, Jeannin L, Iterbeke K, Schubiger PA. Organometallic 99mTc-aquaion labels peptide to an unprecedented high specific activity. J Nucl Med (1999), 40, 1913–1917.
  • Eisenwiener KP, Powell P, Mäcke HR. A convenient synthesis of novel bifunctional prochelators for coupling to bioactive peptides for radiometal labelling. Bioorg Med Chem Lett (2000), 10, 2133–2135.
  • Eisenwiener KP, Prata MI, Buschmann I, Zhang HW, Santos AC, Wenger S, Reubi JC, Mäcke HR. NODAGATOC, a new chelator-coupled somatostatin analogue labeled with [67/68Ga] and [111In] for SPECT, PET, and targeted therapeutic applications of somatostatin receptor (hsst2) expressing tumors. Bioconjug Chem (2002), 13, 530–541.
  • Engfeldt T, Orlova A, Tran T, Bruskin A, Widstrom C, Karlstrom AE, Tolmachev V. Imaging of HER2-expressing tumours using a synthetic Affibody molecule containing the 99mTc-chelating mercaptoacetyl-glycyl-glycyl-glycyl (MAG3) sequence. Eur J Nucl Med Mol Imaging (2007), 34, 722–733.
  • Engfeldt T, Tran T, Orlova A, Widstrom C, Feldwisch J, Abrahmsen L, Wennborg A, Karlstrom AE, Tolmachev V. 99mTc-chelator engineering to improve tumour targeting properties of a HER2-specific Affibody molecule. Eur J Nucl Med Mol Imaging 2007.
  • Fowler J, Wolf AP. Working against time: Rapid radiotracer synthesis and imaging the human brain. Acc Chem Res 1997, 30, 181–188.
  • Fritzberg AR, Kasina S, Eshima D, Johnson DL. Synthesis and biological evaluation of technetium-99m MAG3 as a hippuran replacement. J Nucl Med (1986), 27, 111–116.
  • Froidevaux S, Calame-Christe M, Schuhmacher J, Tanner H, Saffrich R, Henze M, Eberle AN. A gallium-labeled DOTA-α-melanocyte-stimulating hormone analog for PET imaging of melanoma metastases. J Nucl Med (2004), 45, 116–123.
  • Froidevaux S, Calame-Christe M, Tanner H, Eberle AN. Melanoma targeting with DOTA-α-melanocyte-stimulating hormone analogs: Structural parameters affecting tumor uptake and kidney uptake. J Nucl Med (2005), 46, 887–895.
  • Froidevaux S, Calame-Christe M, Tanner H, Sumanovski L, Eberle AN. A novel DOTA-α-melanocyte-stimulating hormone analog for metastatic melanoma diagnosis. J Nucl Med (2002), 43, 1699–1706.
  • Froidevaux S, Eberle AN, Christe M, Sumanovski L, Heppeler A, Schmitt JS, Eisenwiener K, Beglinger C, Mäcke HR. Neuroendocrine tumor targeting: Study of novel gallium-labeled somatostatin radiopeptides in a rat pancreatic tumor model. Int J Cancer (2002), 98, 930–937.
  • Frost AE. Polyaminopolycarboxylic acids derived from polyethyleneamines. Nature (1956), 178, 322.
  • Garcia Garayoa E, Schweinsberg C, Maes V, Rüegg D, Blanc A, Blauenstein P, Tourwé DA, Beck-Sickinger AG, Schubiger PA. New [99mTc]bombesin analogues with improved biodistribution for targeting gastrin releasing-peptide receptor-positive tumors. Q J Nucl Med Mol Imaging (2007), 51, 42–50.
  • Garg PK, Alston KL, Welsh PC, Zalutsky MR. Enhanced binding and inertness to dehalogenation of α-melanotropic peptides labeled using N-succinimidyl 3-iodobenzoate. Bioconjug Chem (1996), 7, 233–239.
  • Ginj M, Zhang H, Waser B, Cescato R, Wild D, Wang X, Erchegyi J, Rivier J, Mäcke HR, Reubi JC. Radiolabeled somatostatin receptor antagonists are preferable to agonists for in vivo peptide receptor targeting of tumors. Proc Natl Acad Sci USA (2006), 103, 16436–16441.
  • Goldenberg DM, Chatal JF, Barbet J, Boerman O, Sharkey RM. Cancer imaging and therapy with bispecific antibody pretargeting. Update Cancer Ther (2007), 2, 19–31.
  • Goldenberg DM, DeLand F, Kim E, Bennett S, Primus FJ, van Nagell JR, Jr Estes N, DeSimone P, Rayburn P. Use of radiolabeled antibodies to carcinoembryonic antigen for the detection and localization of diverse cancers by external photoscanning. N Engl J Med (1978), 298, 1384–1386.
  • Goldenberg DM, Sharkey RM. Advances in cancer therapy with radiolabeled monoclonal antibodies. Q J Nucl Med Mol Imaging (2006), 50, 248–264.
  • Goodwin DA, Meares CF, DeRiemer LH, Diamanti CI, Goode RL, Baumert JE, Jr, Sartoris, DJ, Lantieri RL, Fawcett HD. Clinical studies with In-111 BLEDTA, a tumor-imaging conjugate of bleomycin with a bifunctional chelating agent. J Nucl Med (1981), 22, 787–792.
  • Gottesman IS, Mandarino LJ, Gerich JE. Somatostatin: Its role in health and disease. Spec Top Endocrinol Metab (1982), 4, 177–243.
  • Gotthardt M, Boermann OC, Behr TM, Béhé MP, Oyen WJ. Development and clinical application of peptide-based radiopharmaceuticals. Curr Pharm Des (2004), 10, 2951–2963.
  • Gries H, inventor United States Patent No. 5,871,709, (1999).
  • Harris M. Monoclonal antibodies as therapeutic agents for cancer. Lancet Oncol (2004), 5, 292–302.
  • Heppeler A, Froidevaux S, Eberle AN, Mäcke HR. Receptor targeting for tumor localisation and therapy with radiopeptides. Curr Med Chem (2000), 7, 971–994.
  • Heppeler A, Froidevaux S, Mäcke HR, Jermann E, Béhé M, Powell P, Henning M. Radiometal-labelled macrocyclic chelator-derivatised somatostatin analogue with superb tumour-targeting properties and potential for receptor-mediated internal radiotherapy. Chem Eur J (1999), 5, 1974–1981.
  • Hnatowich DJ. Recent developments in the radiolabeling of antibodies with iodine, indium, and technetium. Semin Nucl Med (1990), 20, 80–91.
  • Hnatowich DJ, Layne WW, Childs RL, Lanteigne D, Davis MA, Griffin TW, Doherty PW. Radioactive labeling of antibody: a simple and efficient method. Science (1983), 220, 613–615.
  • Hofland LJ, Lamberts SW. The pathophysiological consequences of somatostatin receptor internalization and resistance. Endocr Rev (2003), 24, 28–47.
  • Hohn A, Zimmermann K, Schaub E, Hirzel W, Schubiger PA, Schibli R. Production and separation of “non-standard”’ PET nuclides at a large cyclotron facility: the experiences at the Paul Scherrer Institute in Switzerland. Q J Nucl Med Mol Imaging (2008), 52, 145–150.
  • Hu F, Cutler CS, Hoffman T, Sieckman G, Volkert WA, Jurisson SS. Pm-149 DOTA bombesin analogs for potential radiotherapy. In vivo comparison with Sm-153 and Lu-177 labeled DO3A-amide-βAla-BBN(7-14)NH2. Nucl Med Biol (2002), 29, 423–430.
  • Humm JL, Howell RW, Rao DV. Dosimetry of Auger-electron-emitting radionuclides: Report no. 3 of AAPM Nuclear Medicine Task Group No. 6. Med Phys (1994), 21, 1901–1915.
  • Jaracz S, Chen J, Kuznetsova LV, Ojima I. Recent advances in tumor-targeting anticancer drug conjugates. Bioorg Med Chem (2005), 13, 5043–5054.
  • Jones-Wilson TM, Deal KA, Anderson CJ, McCarthy DW, Kovacs Z, Motekaitis RJ, Sherry AD, Martell AE, Welch MJ. The in vivo behavior of copper-64-labeled azamacrocyclic complexes. Nucl Med Biol (1998), 25, 523–530.
  • Jurisson S, Aston K, Fair CK, Schlemper EO, Sharp PR, Troutner DE. Effect of ring size on properties of technetium amine oxime complex. X-ray structures of TcO2Pent(AO)2, which contains an unusual eight-membered chelate ring, and of TcOEn(AO)2. Inorg Chem (1987), 26, 3576–3582.
  • Jurisson SS, Lydon JD. Potential technetium small molecule radiopharmaceuticals. Chem Rev (1999), 99, 2205–2218.
  • Kaden TA. Labelling monoclonal antibodies with macrocyclic radiometal complexes. Dalton Trans 2006, 2006.
  • Kim YS, Yang CT, Wang J, Wang L, Li ZB, Chen X, Liu S. Effects of targeting moiety, linker, bifunctional chelator, and molecular charge on biological properties of 64Cu-labeled triphenylphosphonium cations. J Med Chem 2008, 51, 2971–2984.
  • Knogler K, Grunberg J, Zimmermann K, Cohrs S, Honer M, Ametamey S, Altevogt P, Fogel M, Schubiger PA, Novak-Hofer I. Copper-67 radioimmunotherapy and growth inhibition by anti-L1-cell adhesion molecule monoclonal antibodies in a therapy model of ovarian cancer metastasis. Clin Cancer Res (2007), 13, 603–611.
  • Knör S, Modlinger A, Poethko T, Schottelius M, Wester HJ, Kessler H. Synthesis of novel 1,4,7,10-tetraazacyclodecane-1,4,7,10- tetraacetic acid (DOTA) derivatives for chemoselective attachment to unprotected polyfunctionalized compounds. Chem Eur J (2007), 13, 6082–6090.
  • Kobayashi S, Mizushima A, Sasuga A, Watanabe M. Development of soft-based double-stranded peptide chelators which selectively separate europium and lanthanum ions based on the hardness concept. Chem Pharm Bull (Tokyo) (2006), 54, 761–763.
  • Körner M, Reubi JC. NPY receptors in human cancer: A review of current knowledge. Peptides (2007), 28, 419–425.
  • Kosmas C, Snook D, Gooden CS, Courtenay-Luck NS, McCall MJ, Meares CF, Epenetos AA. Development of humoral immune responses against a macrocyclic chelating agent (DOTA) in cancer patients receiving radioimmunoconjugates for imaging and therapy. Cancer Res (1992), 52, 904–911.
  • Kozak RW, Raubitschek A, Mirzadeh S, Brechbiel MW, Junghans RP, Gansow OA, Waldmann TA, Junghaus R. Nature of the bifunctional chelating agent used for radioimmunotherapy with yttrium-90 monoclonal antibodies: Critical factors in determining in vivo survival and organ toxicity. Cancer Res (1989), 49, 2639–2644.
  • Krejcarek GE, Tucker KL. Covalent attachment of chelating groups to macromolecules. Biochem Biophys Res Commun (1977), 77, 581–585.
  • Krenning EP, Kwekkeboom DJ, Valkema R, Pauwels S, Kvols LK, De Jong M. Peptide receptor radionuclide therapy. Ann NY Acad Sci (2004), 1014, 234–245.
  • Kunstler JU, Veerendra B, Figueroa SD, Sieckman GL, Rold TL, Hoffman TJ, Smith CJ, Pietzsch HJ. Organometallic 99mTc(III) ‘4 + 1’ bombesin(7-14) conjugates: Synthesis, radiolabeling, and in vitro/in vivo studies. Bioconjug Chem (2007), 18, 1651–1661.
  • Lamberts SW, Chayvialle JA, Krenning EP. The visualization of gastroenteropancreatic endocrine tumors. Metabolism (1992), 41, 111–115.
  • Langer M, Beck-Sickinger AG. Peptides as carrier for tumor diagnosis and treatment. Curr Med Chem Anti-Canc Agents (2001), 1, 71–93.
  • Larsen SK, Solomon HF, Caldwell G, Abrams MJ. [99mTc]tricine: A useful precursor complex for the radiolabeling of hydrazinonicotinate protein conjugates. Bioconjug Chem (1995), 6, 635–638.
  • Lee J, Garmestani K, Wu C, Brechbiel MW, Chang HK, Choi CW, Gansow OA, Carrasquillo JA, Paik CH. In vitro and in vivo evaluation of structure-stability relationship of 111In- and 67Ga-labeled antibody via 1B4M or C-NOTA chelates. Nucl Med Biol (1997), 24, 225–230.
  • Lelais G, Seebach D. β2-amino acids: Syntheses, occurrence in natural products, and components of β-peptides. Biopolymers (2004), 76, 206–243.
  • Lewis JS, Anderson CJ. Radiometal-labeled somatostatin analogs for applications in cancer imaging and therapy. Methods Mol Biol (2007), 386, 227–240.
  • Lewis MR, Boswell CA, Laforest R, Buettner TL, Ye D, Connett JM, Anderson CJ. Conjugation of monoclonal antibodies with TETA using activated esters: Biological comparison of 64Cu-TETA-1A3 with 64Cu-BAT-2IT-1A3. Cancer Biother Radiopharm (2001), 16, 483–494.
  • Li M, Meares CF. Synthesis, metal chelate stability studies, and enzyme digestion of a peptide-linked DOTA derivative and its corresponding radiolabeled immunoconjugates. Bioconjug Chem (1993), 4, 275–283.
  • Li Z, Cai W, Cao Q, Chen K, Wu Z, He L, Chen X. 64Cu-labeled tetrameric and octameric RGD peptides for small-animal PET of tumor αvβ3 integrin expression. J Nucl Med (2007), 48, 1162–1171.
  • Lin MS, Goodwin DA, Kruse SL. Bleomycin as a 99mTc carrier in tumor visualization. J Nucl Med (1974), 15, 338–342.
  • Line BR, Mitra A, Nan A, Ghandehari H. Targeting tumor angiogenesis: Comparison of peptide and polymer-peptide conjugates. J Nucl Med (2005), 46, 1552–1560.
  • Liu G, Hnatowich DJ. A Semiempirical model of tumor pretargeting. Bioconjug Chem (2008), 19, 2095–2104.
  • Liu S. Bifunctional coupling agents for radiolabeling of biomolecules and target-specific delivery of metallic radionuclides. Adv Drug Deliv Rev (2008), 60, 1347–1370.
  • Liu S, Edwards DS. 99mTc-Labeled small peptides as diagnostic radiopharmaceuticals. Chem Rev (1999), 99, 2235–2268.
  • Liu S, Edwards DS, Looby RJ, Poirier MJ, Rajopadhye M, Bourque JP, Carroll TR. Labeling cyclic glycoprotein IIb/IIIa receptor antagonists with 99mTc by the preformed chelate approach: effects of chelators on properties of [99mTc]chelator-peptide conjugates. Bioconjug Chem (1996), 7, 196–202.
  • Loncin MF, Desreux JF, Merciny E. Coordination of lanthanides by two polyamino polycarboxylic macrocycles: Formation of highly stable lanthanide complexes. Inorg Chem (1986), 25, 2646–2648.
  • Lucignani G. Non-standard PET radionuclides: Time to get ready for new clinical PET strategies. Eur J Nucl Med Mol Imaging (2007), 34, 294–300.
  • Mäcke HR, Hofmann M, Haberkorn U. 68Ga-labeled peptides in tumor imaging. J Nucl Med (2005), 46 Suppl 1, 172S–178S.
  • Maes V, Garcia-Garayoa E, Blauenstein P, Tourwé D. Novel 99mTc-labeled neurotensin analogues with optimized biodistribution properties. J Med Chem (2006), 49, 1833–1836.
  • Marchese A, Paing MM, Temple BR, Trejo J. G protein-coupled receptor sorting to endosomes and lysosomes. Annu Rev Pharmacol Toxicol (2008), 48, 601–629.
  • Mariani G, Erba PA, Signore A. Receptor-mediated tumor targeting with radiolabeled peptides: There is more to it than somatostatin analogs. J Nucl Med (2006), 47, 1904–1907.
  • Mather SJ. Design of radiolabelled ligands for the imaging and treatment of cancer. Mol Biosyst (2007), 3, 30–35.
  • Mather SJ, McKenzie AJ, Sosabowski JK, Morris TM, Ellison D, Watson SA. Selection of radiolabeled gastrin analogs for peptide receptor-targeted radionuclide therapy. J Nucl Med (2007), 48, 615–622.
  • Mathews WB, Yoo SE, Lee SH, Scheffel U, Rauseo PA, Zober TG, Gocco G, Sandberg K, Ravert HT, Dannals RF, Szabo Z. A novel radioligand for imaging the AT1 angiotensin receptor with PET. Nucl Med Biol (2004), 31, 571–574.
  • McCall MJ, Diril H, Meares CF. Simplified method for conjugating macrocyclic bifunctional chelating agents to antibodies via 2-iminothiolane. Bioconjug Chem (1990), 1, 222–226.
  • McMurry TJ, Brechbiel M, Kumar K, Gansow OA. Convenient synthesis of bifunctional tetraaza macrocycles. Bioconjug Chem (1992), 3, 108–117.
  • McMurry TJ, Brechbiel M, Wu C, Gansow OA. Synthesis of 2-(p-thiocyanatobenzyl)-1,4,7-triazacyclononane-1,4,7-triacetic acid: Application of the 4-methoxy-2,3,6-trimethylbenzenesulfonamide protecting group in the synthesis of macrocyclic polyamines. Bioconjug Chem (1993), 4, 236–245.
  • Meares CF, Moi MK, Diril H, Kukis DL, McCall MJ, Deshpande SV, DeNardo SJ, Snook D, Epenetos AA. Macrocyclic chelates of radiometals for diagnosis and therapy. Br J Cancer Suppl (1990), 10, 21–26.
  • Meares CF, Wensel TG. Metal chelates as probes of biological systems. Acc Chem Res (1984), 17, 202–209.
  • Merbach CF, Tôth E. The Chemistry of Contrast Agents in Medical Magnetic Resonance Imaging. Chichester, UK: Wiley, (2001).
  • Meredith RF, Buchsbaum DJ. Pretargeted radioimmunotherapy. Int J Radiat Oncol Biol Phys (2006), 66:S57–59.
  • Miederer M, Henriksen G, Alke A, Mossbrugger I, Quintanilla-Martinez L, Senekowitsch-Schmidtke R, Essler M. Preclinical evaluation of the α-particle generator nuclide 225Ac for somatostatin receptor radiotherapy of neuroendocrine tumors. Clin Cancer Res (2008), 14, 3555–3561.
  • Moeller T, Thompson LC. Observations on the rare earths - LXXV(1). The stabilities of diethylenetriaminepentaacetic acid chelates. J Inorg Nucl Chem (1962), 24, 499.
  • Moi MK, DeNardo SJ, Meares CF. Stable bifunctional chelates of metals used in radiotherapy. Cancer Res (1990), 50, 789s–793s.
  • Moi MK, Meares CF. The peptide way to macrocyclic bifunctional chelating agents: Synthesis of 2-(p-nitrobenzyl)-1,4,7,10-tetraazacyclododecane-N,N’,N’’,N’’’-tetraacetic acid and study of Its yttrium(III) complex. J Am Chem Soc (1988), 110, 6266–6267.
  • Nayak T, Norenberg J, Anderson T, Atcher R. A comparison of high- versus low-linear energy transfer somatostatin receptor targeted radionuclide therapy in vitro. Cancer Biother Radiopharm (2005), 20, 52–57.
  • Nikula TK, McDevitt MR, Finn RD, Wu C, Kozak RW, Garmestani K, Brechbiel MW, Curcio MJ, Pippin CG, Tiffany-Jones L, Geerlings MWSr., Apostolidis, C, Molinet R, Geerlings MWJr., Gansow, OA, Scheinberg DA. Alpha-emitting bismuth cyclohexylbenzyl DTPA constructs of recombinant humanized anti-CD33 antibodies: Pharmacokinetics, bioactivity, toxicity and chemistry. J Nucl Med (1999), 40, 166–176.
  • Nock BA, Maina T, Béhé M, Nikolopoulou A, Gotthardt M, Schmitt JS, Behr TM, Mäcke HR. CCK-2/gastrin receptor-targeted tumor imaging with 99mTc-labeled minigastrin analogs. J Nucl Med (2005), 46, 1727–1736.
  • Novak-Hofer I, Amstutz HP, Ma¨cke HR, Schwarzbach R, Zimmermann K, Morgenthaler JJ, Schubiger PA. Cellular processing of copper-67-labeled monoclonal antibody chCE7 by human neuroblastoma cells. Cancer Res (1995), 55, 46–50.
  • Novak-Hofer I, Schubiger PA. Copper-67 as a therapeutic nuclide for radioimmunotherapy. Eur J Nucl Med Mol Imaging (2002), 29, 821–830.
  • Novak-Hofer I, Zimmermann K, Mäcke HR, Amstutz HP, Carrel F, Schubiger PA. Tumor uptake and metabolism of copper-67-labeled monoclonal antibody chCE7 in nude mice bearing neuroblastoma xenografts. J Nucl Med (1997), 38, 536–544.
  • Novak-Hofer I, Zimmermann K, Schubiger PA. Peptide linkers lead to modification of liver metabolism and improved tumor targeting of copper-67-labeled antibody fragments. Cancer Biother Radiopharm (2001), 16, 469–481.
  • Oakley RH, Laporte SA, Holt JA, Barak LS, Caron MG. Molecular determinants underlying the formation of stable intracellular G protein-coupled receptor-β-arrestin complexes after receptor endocytosis. J Biol Chem (2001), 276, 19452–19460.
  • Okarvi SM. Peptide-based radiopharmaceuticals: Future tools for diagnostic imaging of cancers and other diseases. Med Res Rev (2004), 24, 357–397.
  • Paganelli G, Bartolomei M, Grana C, Ferrari M, Rocca P, Chinol M. Radioimmunotherapy of brain tumor. Neurol Res (2006), 28, 518–522.
  • Papini G, Alidori S, Lewis JS, Reichert DE, Pellei M, Gioia Lobbia G, Biddlecombe GB, Anderson CJ, Santini C. Synthesis and characterization of the copper(ii) complexes of new N2S2-donor macrocyclic ligands: Synthesis and in vivo evaluation of the 64Cu complexes. Dalton Trans (2009), 177–184.
  • Parker D. Tumor targeting with radiolabelled macrocycle-antibody conjugates. Chem Soc Rev (1990), 19, 271–291.
  • Patel YC. Somatostatin and its receptor family. Front Neuroendocrinol (1999), 20, 157–198.
  • Perez DM, Karnik SS. Multiple signaling states of G-protein-coupled receptors. Pharmacol Rev (2005), 57, 147–161.
  • Perico ME, Chinol M, Nacca A, Luison E, Paganelli G, Canevari S. The humoral immune response to macrocyclic chelating agent DOTA depends on the carrier molecule. J Nucl Med (2001), 42, 1697–1703.
  • Perkins AC, Missailidis S. Radiolabelled aptamers for tumour imaging and therapy. Q J Nucl Med Mol Imaging (2007), 51, 292–296.
  • Peterson JJ, Pak RH, Meares CF. Total solid-phase synthesis of 1,4,7,10-tetraazacyclododecane-N,N’, N’’,N’’’-tetraacetic acid-functionalized peptides for radioimmunotherapy. Bioconjug Chem (1999), 10, 316–320.
  • Pinkas L, Robins PD, Forstrom LA, Mahoney DW, Mullan BP. Clinical experience with radiolabelled monoclonal antibodies in the detection of colorectal and ovarian carcinoma recurrence and review of the literature. Nucl Med Commun (1999), 20, 689–696.
  • Poethko T, Schottelius M, Thumshirn G, Hersel U, Herz M, Henriksen G, Kessler H, Schwaiger M, Wester HJ. Two-step methodology for high-yield routine radiohalogenation of peptides: 18F-labeled RGD and octreotide analogs. J Nucl Med (2004), 45, 892–902.
  • Prata MI, Santos AC, Geraldes CF, de Lima JJ. Structural and in vivo studies of metal chelates of Ga(III) relevant to biomedical imaging. J Inorg Biochem (2000), 79, 359–363.
  • Pressman D, Hill RF, Foote FW. The zone of localization of anti-mouse-kidney serum as determined by radioautographs. Science (1949), 109, 65–66.
  • Pressman D, Korngold L. The in vivo localization of anti-Wagner-osteogenic-sarcoma antibodies. Cancer (1953), 6, 619–623.
  • Prinster SC, Hague C, Hall RA. Heterodimerization of G protein-coupled receptors: specificity and functional significance. Pharmacol Rev (2005), 57, 289–298.
  • Ranganathan RS, Pillai RK, Raju N, Fan H, Nguyen H, Tweedle MF, Desreux JF, Jacques V. Polymethylated DOTA ligands. 1. Synthesis of rigidified ligands and studies on the effects of alkyl substitution on acid-base properties and conformational mobility. Inorg Chem (2002), 41, 6846–6855.
  • Ranganathan RS, Raju N, Fan H, Zhang X, Tweedle MF, Desreux JF, Jacques V. Polymethylated DOTA ligands. 2. Synthesis of rigidified lanthanide chelates and studies on the effect of alkyl substitution on conformational mobility and relaxivity. Inorg Chem (2002), 41, 6856–6866.
  • Renn O, Meares CF. Large-scale synthesis of the bifunctional chelating agent 2-(p-nitrobenzyl)-1,4,7,10-tetraazacyclododecane-N,N’,N’’,N’’’-tetra acetic acid, and the determination of its enantiomeric purity by chiral chromatography. Bioconjug Chem (1992), 3, 563–569.
  • Reubi JC. Neuropeptide receptors in health and disease: The molecular basis for in vivo imaging. J Nucl Med (1995), 36, 1825–1835.
  • Reubi JC. Peptide receptors as molecular targets for cancer diagnosis and therapy. Endocr Rev (2003), 24, 389–427.
  • Reubi JC. Somatostatin and other peptide receptors as tools for tumor diagnosis and treatment. Neuroendocrinology (2004), 80 Suppl 1:51–56.
  • Reubi JC. Peptide receptor expression in GEP-NET. Virchows Arch (2007), 451 Suppl 1:S47–50.
  • Reubi JC, Laissue J, Krenning E, Lamberts SW. Somatostatin receptors in human cancer: Incidence, characteristics, functional correlates and clinical implications. J Steroid Biochem Mol Biol (1992), 43, 27–35.
  • Reubi JC, Mäcke HR, Krenning EP. Candidates for peptide receptor radiotherapy today and in the future. J Nucl Med (2005), 46 Suppl 1, 67S–75S.
  • Riccabona G, Decristoforo C. Peptide targeted imaging of cancer. Cancer Biother Radiopharm (2003), 18, 675–687.
  • Richman JE, Atkins TJ. Nitrogen analogs of crown ethers. J Am Chem Soc (1974), 96, 2268–2270.
  • Ross JS, Gray K, Gray GS, Worland PJ, Rolfe M. Anticancer antibodies. Am J Clin Pathol (2003), 119, 472–485.
  • Salvatori M, Indovina L, Mansi L. Targeted α-particle therapy: A clinical overview. Curr Radiopharm (2008), 1, 251–253.
  • Sanz L, Blanco B, Alvarez-Vallina L. Antibodies and gene therapy: Teaching old “magic bullets” new tricks. Trends Immunol (2004), 25, 85–91.
  • Sato N, Park CW, Kim HS, Han ES, Wong KJ, Paik RS, Park LS, Yao Z, Carrasquillo JA, Paik CH. Synthesis of dendrimer-based biotin radiopharmaceuticals to enhance whole-body clearance. Nucl Med Biol (2003), 30, 617–625.
  • Schally AV, Comaru-Schally AM, Nagy A, Kovacs M, Szepeshazi K, Plonowski A, Varga JL, Halmos G. Hypothalamic hormones and cancer. Front Neuroendocrinol (2001), 22, 248–291.
  • Schibli R, La Bella R, Alberto R, Garcia-Garayoa E, Ortner K, Abram U, Schubiger PA. Influence of the denticity of ligand systems on the in vitro and in vivo behavior of 99mTc(I)-tricarbonyl complexes: A hint for the future functionalization of biomolecules. Bioconjug Chem (2000), 11, 345–351.
  • Serafini AN. From monoclonal antibodies to peptides and molecular recognition units: an overview. J Nucl Med (1993), 34, 533–536.
  • Siegfried L, Kaden TA. Formation and dissociation kinetics of Cu(II) and Ni(II) complexes with N2S2-macrocycles. Dalton Trans (2005), 1136–1140.
  • Smith A, Alberto R, Blaeuenstein P, Novak-Hofer I, Mäcke HR, Schubiger PA. Preclinical evaluation of 67Cu-labeled intact and fragmented anti-colon carcinoma monoclonal antibody MAb35. Cancer Res (1993), 53, 5727–5733.
  • Smith MC, Liu J, Chen T, Schran H, Yeh CM, Jamar F, Valkema R, Bakker W, Kvols L, Krenning E, Pauwels S. OctreoTher: Ongoing early clinical development of a somatostatin-receptor-targeted radionuclide antineoplastic therapy. Digestion (2000), 62 Suppl 1:69–72.
  • Smith SV. Sarar technology for the application of copper-64 in biology and materials science. Q J Nucl Med Mol Imaging (2008), 52, 193–202.
  • Smith-Jones PM, Fridrich R, Kaden TA, Novak-Hofer I, Siebold K, Tschudin D, Mäcke HR. Antibody labeling with copper-67 using the bifunctional macrocycle 4-[(1,4,8,11-tetraazacy clotetradec-1-yl)methyl]benzoic acid. Bioconjug Chem (1991), 2, 415–421.
  • Smith-Jones PM, Stolz B, Albert R, Knecht H, Bruns C. Synthesis, biodistribution and renal handling of various chelate-somatostatin conjugates with metabolizable linking groups. Nucl Med Biol (1997), 24, 761–769.
  • Smith-Jones PM, Stolz B, Albert R, Ruser G, Briner U, Mäcke HR, Bruns C. Synthesis and characterisation of [90Y]-Bz-DTPA-oct: a yttrium-90-labelled octreotide analogue for radiotherapy of somatostatin receptor-positive tumours. Nucl Med Biol (1998), 25, 181–188.
  • Sprague JE, Peng Y, Fiamengo AL, Woodin KS, Southwick EA, Weisman GR, Wong EH, Golen JA, Rheingold AL, Anderson CJ. Synthesis, characterization and in vivo studies of Cu(II)-64-labeled cross-bridged tetraazamacrocycle-amide complexes as models of peptide conjugate imaging agents. J Med Chem (2007), 50, 2527–2535.
  • Sprague JE, Peng Y, Sun X, Weisman GR, Wong EH, Achilefu S, Anderson CJ. Preparation and biological evaluation of copper-64-labeled Tyr3-octreotate using a cross-bridged macrocyclic chelator. Clin Cancer Res 2004, 10, 8674–8682.
  • Srinivasan A. Proc 15th Am Pept Symp 1996, 267–268.
  • Stadtman ER. Oxidation of free amino acids and amino acid residues in proteins by radiolysis and by metal-catalyzed reactions. Annu Rev Biochem (1993), 62, 797–821.
  • Stetter H, Frank W. Komplexbildung mit Tetraazacycloalkan-N,N’,N’’,N’’’-tetraessigsäure in Abhängigkeit von der Ringgrösse. Ang Chem (1976), 88, 760.
  • Stolz B, Smith-Jones P, Albert R, Tolcsvai L, Briner U, Ruser G, Mäcke H, Weckbecker G, Bruns C. Somatostatin analogues for somatostatin-receptor-mediated radiotherapy of cancer. Digestion (1996), 57 Suppl 1, 17–21.
  • Studer M, Kaden TA, Mäcke HR. 15. Metal complexes with macrocyclic ligands. Reactivity studies of the pendant carboxylic group in a macrocyclic Cu2+ complex towards amide formation and its use as a protein-labelling agent. Helv Chim Acta (1990), 73, 149–153.
  • Studer M, Meares CF. Synthesis of novel 1,4,7-triazacyclononane-N,N’,N”-triacetic acid derivatives suitable for protein labeling. Bioconjug Chem (1992), 3, 337–341.
  • Takahashi M, Takamoto S. The preparation of trivalent metal chelates with some N3O3-type ligands. Bull Chem Soc Jpn (1977), 50, 3413–3414.
  • Terrillon S, Bouvier M. Roles of G-protein-coupled receptor dimerization. EMBO Rep (2004), 5, 30–34.
  • Thakur ML, Aruva MR, Gariepy J, Acton P, Rattan S, Prasad S, Wickstrom E, Alavi A. PET imaging of oncogene overexpression using 64Cu-vasoactive intestinal peptide (VIP) analog: comparison with 99mTc-VIP analog. J Nucl Med (2004), 45, 1381–1389.
  • Tolmachev V, Carlsson J, Lundqvist H. A limiting factor for the progress of radionuclide-based cancer diagnostics and therapy availability of suitable radionuclides. Acta Oncol (2004), 43, 264–275.
  • Tolmachev V, Xu H, Wallberg H, Ahlgren S, Hjertman M, Sjoberg A, Sandstrom M, Abrahmsen L, Brechbiel MW, Orlova A. Evaluation of a maleimido derivative of CHX-A’’ DTPA for site-specific labeling of affibody molecules. Bioconjug Chem (2008), 19, 1579–1587.
  • Tran T, Engfeldt T, Orlova A, Widstrom C, Bruskin A, Tolmachev V, Karlstrom AE. In vivo evaluation of cysteine-based chelators for attachment of 99mTc to tumor-targeting Affibody molecules. Bioconjug Chem (2007), 18, 549–558.
  • Urch DS, Welch MJ. Radiochemistry and radiopharmaceuticals. Annu Rep Prog Chem, Sect A: Inorg Chem (2005), 101, 585–606.
  • Verbruggen AM, Nosco DL, Van Nerom CG, Bormans GM, Adriaens PJ, De Roo MJ. Technetium-99m-L,L-ethylenedicysteine: A renal imaging agent. I. Labeling and evaluation in animals. J Nucl Med (1992), 33, 551–557.
  • Vergote V, Bode S, Peremans K, Vanbree H, Baert B, Slegers G, Burvenich C, De Spiegeleer B. Analysis of iodinated peptides by LC-DAD/ESI ion trap mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci (2007), 850, 213–220.
  • Virgolini I, Traub T, Novotny C, Leimer M, Fuger B, Li SR, Patri P, Pangerl T, Angelberger P, Raderer M, Burggasser G, Andreae F, Kurtaran A, Dudczak R. Experience with indium-111 and yttrium-90-labeled somatostatin analogs. Curr Pharm Des (2002), 8, 1781–1807.
  • Wadas TJ, Anderson CJ. Radiolabeling of TETA- and CB-TE2A-conjugated peptides with copper-64. Nat Protoc (2006), 1, 3062–3068.
  • Wagner S, Eritja R, Zuhayra M, Oberdorfer F, Mohammed A, Mier W, Haberkorn U, Eisenhut M. Synthesis and properties of radiolabeled CPTA-oligonucleotides. J Label Compd Radiopharm (2003), 46, 175–186.
  • Wang M, Caruano AL, Lewis MR, Meyer LA, VanderWaal RP, Anderson CJ. Subcellular localization of radiolabeled somatostatin analogues: Implications for targeted radiotherapy of cancer. Cancer Res (2003), 63, 6864–6869.
  • Weckbecker G, Lewis I, Albert R, Schmid HA, Hoyer D, Bruns C. Opportunities in somatostatin research: biological, chemical and therapeutic aspects. Nat Rev Drug Discov (2003), 2, 999–1017.
  • Weiner RE, Thakur ML. Radiolabeled peptides in diagnosis and therapy. Semin Nucl Med (2001), 31, 296–311.
  • Weiner RE, Thakur ML. Radiolabeled peptides in the diagnosis and therapy of oncological diseases. Appl Radiat Isot (2002), 57, 749–763.
  • Weisman GR, Rogers ME, Wong EH, Jasinski JP, Paight ES. Crossbridged cyclam. Protonation and Li+ complexation in a diamond-lattice cleft. J Am Chem Soc (1990), 112, 8604–8605.
  • Welch MJ, Lewis JS. [Tc(CO)3]+ chemistry: A promising new concept for SPECT? Against. Eur J Nucl Med Mol Imaging (2003), 30, 1302–1304.
  • Wester HJ, Kessler H. Molecular targeting with peptides or peptide-polymer conjugates: Just a question of size? J Nucl Med (2005), 46, 1940–1945.
  • Wiegand H, Wirz B, Schweitzer A, Camenisch GP, Rodriguez Perez MI, Gross G, Woessner R, Voges R, Arvidsson PI, Frackenpohl J, Seebach D. The outstanding metabolic stability of a 14C-labeled β-nonapeptide in rats in vitro and in vivo pharmacokinetic studies. Biopharm Drug Dispos (2002), 23, 251–262.
  • Xu H, Baidoo KE, Wong KJ, Brechbiel MW. A novel bifunctional maleimido CHX-A’’ chelator for conjugation to thiol- containing biomolecules. Bioorg Med Chem Lett (2008), 18, 2679–2683.
  • Yalow RS, Berson SA. Immunoassay of plasma insulin in man. Diabetes (1961), 10, 339–344.
  • Zhang HW, Schuhmacher J, Waser B, Wild D, Eisenhut M, Reubi JC, Mäcke H. DOTA-PESIN, a DOTA-conjugated bombesin derivative designed for the imaging and targeted radionuclide treatment of bombesin receptor-positive tumours. Eur J Nucl Med Mol Imaging (2007), 34, 1198–1208.
  • Zhang X, Wang Y, Li J, Yin D. An improved synthesis of S- benzoyl mercaptoacetyltriglycine as BFCA and the labeling of IgG with carrier-free 188Re. J Radioanalyt Nucl Chem (2003), 256.
  • Zimmermann K, Gianollini S, Schubiger PA, Novak-Hofer I. A triglycine linker improves tumor uptake and biodistributions of 67Cu-labeled anti-neuroblastoma MAb chCE7 F(ab’)2 fragments. Nucl Med Biol (1999), 26, 943–950.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.