188
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Calcium-induced conformational changes of Thrombospondin-1 signature domain: implications for vascular disease

, , &
Pages 239-251 | Received 17 May 2016, Accepted 24 Jun 2016, Published online: 02 Aug 2016

References

  • Good DJ, Polverini PJ, Rastinejad F, et al. A tumor suppressor-dependent inhibitor of angiogenesis is immunologically and functionally indistinguishable from a fragment of thrombospondin. Proc Natl Acad Sci USA 1990;87:6624–8.
  • Taraboletti G, Roberts DD, Liotta LA. Thrombospondin-induced tumor cell migration: haptotaxis and chemotaxis are mediated by different molecular domains. J Cell Biol 1987;105:2409–15.
  • Vogel T, Guo NH, Krutzsch HC, et al. Modulation of endothelial cell proliferation, adhesion, and motility by recombinant heparin-binding domain and synthetic peptides from the type I repeats of thrombospondin. J Cell Biochem 1993;53:74–84.
  • Majack RA, Goodman LV, Dixit VM. Cell surface thrombospondin is functionally essential for vascular smooth muscle cell proliferation. J Cell Biol 1988;106:415–22.
  • Taraboletti G, Roberts D, Liotta LA, Giavazzi R. Platelet thrombospondin modulates endothelial cell adhesion, motility, and growth: a potential angiogenesis regulatory factor. J Cell Biol 1990;111:765–72.
  • Bornstein P, Agah A, Kyriakides TR. The role of thrombospondins 1 and 2 in the regulation of cell-matrix interactions, collagen fibril formation, and the response to injury. Int J Biochem Cell Biol 2004;36:1115–25.
  • Lawler J. Thrombospondin-1 as an endogenous inhibitor of angiogenesis and tumor growth. J Cell Mol Med 2002;6:1–12.
  • Lawler PR, Lawler J. Molecular basis for the regulation of angiogenesis by thrombospondin-1 and -2. Cold Spring Harb Perspect Med 2012;2:a006627.
  • Jimenez B, Volpert OV, Crawford SE, et al. Signals leading to apoptosis-dependent inhibition of neovascularization by thrombospondin-1. Nat Med 2000;6:41–8.
  • Ren B, Song K, Parangi S, et al. A double hit to kill tumor and endothelial cells by TRAIL and antiangiogenic 3TSR. Cancer Res 2009;69:3856–65.
  • Oganesian A, Armstrong LC, Migliorini MM, et al. Thrombospondins use the VLDL receptor and a nonapoptotic pathway to inhibit cell division in microvascular endothelial cells. Mol Biol Cell 2008;19:563–71.
  • Isenberg JS, Jia Y, Fukuyama J, et al. Thrombospondin-1 inhibits nitric oxide signaling via CD36 by inhibiting myristic acid uptake. J Biol Chem 2007;282:15404–15.
  • Isenberg JS, Ridnour LA, Dimitry J, et al. CD47 is necessary for inhibition of nitric oxide-stimulated vascular cell responses by thrombospondin-1. J Biol Chem 2006;281:26069–80.
  • Bauer EM. Novel Roles of Thrombospondin-1 in vascular physiology and disease Pittsburgh: University of Pittsburgh; 2010.
  • Narizhneva NV, Razorenova OV, Podrez EA, et al. Thrombospondin-1 up-regulates expression of cell adhesion molecules and promotes monocyte binding to endothelium. Faseb J 2005;19:1158–60.
  • Stenina OI, Plow EF. Counterbalancing forces: what is thrombospondin-1 doing in atherosclerotic lesions? Circ Res 2008;103:1053–5.
  • Moura R, Tjwa M, Vandervoort P, et al. Thrombospondin-1 deficiency accelerates atherosclerotic plaque maturation in ApoE-/- mice. Circ Res 2008;103:1181–9.
  • Adams JC. Functions of the conserved thrombospondin carboxy-terminal cassette in cell-extracellular matrix interactions and signaling. Int J Biochem Cell Biol 2004;36:1102–14.
  • Kim DJ, Christofidou ED, Keene DR, et al. Inter-molecular interactions of thrombospondins drive their accumulation in extracellular matrix. Mol Biol Cell 2015;26:2640–54.
  • Masli S, Sheibani N, Cursiefen C, Zieske J. Matricellular protein thrombospondins: influence on ocular angiogenesis, wound healing and immuneregulation. Curr Eye Res 2014;39:759–74.
  • Gupta A, Mohanty P, Bhatnagar S. Integrative analysis of ocular complications in atherosclerosis unveils pathway convergence and crosstalk. J Recept Signal Transduct Res 2015;35:149–64.
  • Coligan JE, Slayter HS. Structure of thrombospondin. J Biol Chem 1984;259:3944–8.
  • Adams JC, Lawler J. The thrombospondins. Int J Biochem Cell Biol 2004;36:961–8.
  • Kvansakul M, Adams JC, Hohenester E. Structure of a thrombospondin C-terminal fragment reveals a novel calcium core in the type 3 repeats. Embo J 2004;23:1223–33.
  • Carlson CB, Bernstein DA, Annis DS, et al. Structure of the calcium-rich signature domain of human thrombospondin-2. Nat Struct Mol Biol 2005;12:910–4.
  • A.Frazier W, Prater CA, Jaye D D., Kosfeld M. Interaction of thrombospondin with cells. In: Lahav J, ed. Thrombospondin: CRC Press; 1993.
  • Hofer AM. Another dimension to calcium signaling: a look at extracellular calcium. J Cell Sci 2005;118:855–62.
  • Huang EM, Detwiler TC, Milev Y, Essex DW. Thiol-disulfide isomerization in thrombospondin: effects of conformation and protein disulfide isomerase. Blood 1997;89:3205–12.
  • Rodrigues RG, Guo N, Zhou L, et al. Conformational regulation of the fibronectin binding and alpha 3beta 1 integrin-mediated adhesive activities of thrombospondin-1. J Biol Chem 2001;276:27913–22.
  • Annis DS, Gunderson KA, Mosher DF. Immunochemical analysis of the structure of the signature domains of thrombospondin-1 and thrombospondin-2 in low calcium concentrations. J Biol Chem 2007;282:27067–75.
  • Lawler J, Derick LH, Connolly JE, et al. The structure of human platelet thrombospondin. J Biol Chem 1985;260:3762–72.
  • Misenheimer TM, Hannah BL, Annis DS, Mosher DF. Interactions among the three structural motifs of the C-terminal region of human thrombospondin-2. Biochemistry 2003;42:5125–32.
  • Lawler J, Chao FC, Cohen CM. Evidence for calcium-sensitive structure in platelet thrombospondin. Isolation and partial characterization of thrombospondin in the presence of calcium. J Biol Chem 1982;257:12257–65.
  • Calzada MJ, Kuznetsova SA, Sipes JM, et al. Calcium indirectly regulates immunochemical reactivity and functional activities of the N-domain of thrombospondin-1. Matrix Biol 2008;27:339–51.
  • Vuillard L, Clezardin P, Miller A. Models of human platelet thrombospondin in solution. A dynamic light-scattering study. Biochem J 1991;275:263–6.
  • Lawler J, Simons ER. Cooperative binding of calcium to thrombospondin. The effect of calcium on the circular dichroism and limited tryptic digestion of thrombospondin. J Biol Chem 1983;258:12098–101.
  • Galvin NJ, Dixit VM, O'Rourke KM, et al. Mapping of epitopes for monoclonal antibodies against human platelet thrombospondin with electron microscopy and high sensitivity amino acid sequencing. J Cell Biol 1985;101:1434–41.
  • Kuznetsova SA, Issa P, Perruccio EM, et al. Versican-thrombospondin-1 binding in vitro and colocalization in microfibrils induced by inflammation on vascular smooth muscle cells. J Cell Sci 2006;119:4499–509.
  • Lawler J, Weinstein R, Hynes RO. Cell attachment to thrombospondin: the role of ARG-GLY-ASP, calcium, and integrin receptors. J Cell Biol 1988;107:2351–61.
  • Galvin NJ, Vance PM, Dixit VM, et al. Interaction of human thrombospondin with types I-V collagen: direct binding and electron microscopy. J Cell Biol 1987;104:1413–22.
  • Hogg PJ, Owensby DA, Chesterman CN. Thrombospondin 1 is a tight-binding competitive inhibitor of neutrophil cathepsin G. Determination of the kinetic mechanism of inhibition and localization of cathepsin G binding to the thrombospondin 1 type 3 repeats. J Biol Chem 1993;268:21811–8.
  • Margosio B, Rusnati M, Bonezzi K, et al. Fibroblast growth factor-2 binding to the thrombospondin-1 type III repeats, a novel antiangiogenic domain. Int J Biochem Cell Biol 2008;40:700–9.
  • Margosio B, Marchetti D, Vergani V, et al. Thrombospondin 1 as a scavenger for matrix-associated fibroblast growth factor 2. Blood 2003;102:4399–406.
  • Cohen JR, Sarfati I, Danna D, Wise L. Smooth muscle cell elastase, atherosclerosis, and abdominal aortic aneurysms. Ann Surg 1992;216:327–30.
  • Okada Y, Watanabe S, Nakanishi I, et al. Inactivation of tissue inhibitor of metalloproteinases by neutrophil elastase and other serine proteinases. FEBS Lett 1988;229:157–60.
  • Dorweiler B, Torzewski M, Dahm M, et al. Subendothelial infiltration of neutrophil granulocytes and liberation of matrix-destabilizing enzymes in an experimental model of human neo-intima. Thromb Haemost 2008;99:373–81.
  • Van den Steen PE, Proost P, Wuyts A, et al. Neutrophil gelatinase B potentiates interleukin-8 tenfold by aminoterminal processing, whereas it degrades CTAP-III, PF-4, and GRO-alpha and leaves RANTES and MCP-2 intact. Blood 2000;96:2673–81.
  • Tester AM, Cox JH, Connor AR, et al. LPS responsiveness and neutrophil chemotaxis in vivo require PMN MMP-8 activity. PLoS One 2007;2:e312.
  • Padrines M, Wolf M, Walz A, Baggiolini M. Interleukin-8 processing by neutrophil elastase, cathepsin G and proteinase-3. FEBS Lett 1994;352:231–5.
  • Beer AJ, Pelisek J, Heider P, et al. PET/CT imaging of integrin αvβ3 expression in human carotid atherosclerosis. JACC Cardiovasc Imaging 2014;7:178–87.
  • Hoshiga M, Alpers CE, Smith LL, et al. Alpha-v beta-3 integrin expression in normal and atherosclerotic artery. Circ Res 1995;77:1129–35.
  • Shattil SJ, Newman PJ. Integrins: dynamic scaffolds for adhesion and signaling in platelets. Blood 2004;104:1606–15.
  • Raj T, Kanellakis P, Pomilio G, et al. Inhibition of fibroblast growth factor receptor signaling attenuates atherosclerosis in apolipoprotein E-deficient mice. Arterioscler Thromb Vasc Biol 2006;26:1845–51.
  • Tan K, Duquette M, Liu JH, et al. Crystal structure of the TSP-1 type 1 repeats: a novel layered fold and its biological implication. J Cell Biol 2002;159:373–82.
  • Tan K, Duquette M, Liu JH, et al. The structures of the thrombospondin-1 N-terminal domain and its complex with a synthetic pentameric heparin. Structure 2006;14:33–42.
  • Tan K, Duquette M, Liu JH, et al. Heparin-induced cis- and trans-dimerization modes of the thrombospondin-1 N-terminal domain. J Biol Chem 2008;283:3932–41.
  • Klenotic PA, Page RC, Misra S, Silverstein RL. Expression, purification and structural characterization of functionally replete thrombospondin-1 type 1 repeats in a bacterial expression system. Protein Expr Purif 2011;80:253–9.
  • Carlson CB, Liu Y, Keck JL, Mosher DF. Influences of the N700S thrombospondin-1 polymorphism on protein structure and stability. J Biol Chem 2008;283:20069–76.
  • Tan K, Duquette M, Joachimiak A, Lawler J. The crystal structure of the signature domain of cartilage oligomeric matrix protein: implications for collagen, glycosaminoglycan and integrin binding. Faseb J 2009;23:2490–501.
  • Altschul SF, Gish W, Miller W, et al. Basic local alignment search tool. J Mol Biol 1990;215:403–10.
  • Schwede T, Kopp J, Guex N, Peitsch MC. SWISS-MODEL: An automated protein homology-modeling server. Nucleic Acids Res 2003;31:3381–5.
  • Zheng H, Chordia MD, Cooper DR, et al. Validation of metal-binding sites in macromolecular structures with the CheckMyMetal web server. Nat Protoc 2014;9:156–70.
  • Tripos. Sybyl-X Molecular Modeling Software Packages. 2.0 ed. St. Louis, MO, USA, 2012.
  • Benkert P, Tosatto SC, Schomburg D. QMEAN: a comprehensive scoring function for model quality assessment. Proteins 2008;71:261–77.
  • Laskowski RA, MacArthur MW, Moss DS, Thornton JM. PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Crystallograph 1993;26:283–91.
  • Zhou H, Zhou Y. Distance-scaled, finite ideal-gas reference state improves structure-derived potentials of mean force for structure selection and stability prediction. Protein Sci 2002;11:2714–26.
  • McGuffin LJ, Buenavista MT, Roche DB. The ModFOLD4 server for the quality assessment of 3D protein models. Nucleic Acids Res 2013;41:W368–72.
  • Hess B, Kutzner C, van der Spoel D, Lindahl E. GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J Chem Theory Comput 2008;4:435–47. 2008/03/01.
  • Oostenbrink C, Villa A, Mark AE, van Gunsteren WF. A biomolecular force field based on the free enthalpy of hydration and solvation: the GROMOS force-field parameter sets 53A5 and 53A6. J Comput Chem 2004;25:1656–76.
  • Oostenbrink C, Soares TA, van der Vegt NF, van Gunsteren WF. Validation of the 53A6 GROMOS force field. Eur Biophys J 2005;34:273–84.
  • Pol-Fachin L, Verli H, Lins RD. Extension and validation of the GROMOS 53A6(GLYC) parameter set for glycoproteins. J Comput Chem 2014;35:2087–95.
  • Bussi G, Donadio D, Parrinello M. Canonical sampling through velocity rescaling. The Journal of Chemical Physics 2007;126:014101.
  • Parrinello M, Rahman A. Polymorphic transitions in single crystals: a new molecular dynamics method. J Appl Phys 1981;52:7182–90.
  • Essmann U, Perera L, Berkowitz ML, et al. A smooth particle mesh Ewald method. J Chem Phys 1995;103:8577–93.
  • Cerutti DS, Duke RE, Darden TA, Lybrand TP. Staggered Mesh Ewald: an extension of the smooth particle-mesh Ewald method adding great versatility. J Chem Theory Comput 2009;5:2322.
  • Hess B, Bekker H, Berendsen HJC, Fraaije JGEM. LINCS: a linear constraint solver for molecular simulations. J Comput Chem 1997;18:1463–72.
  • Humphrey W, Dalke A, Schulten K. VMD: visual molecular dynamics. J Mol Graph 1996;14:33–8.
  • Maiorov VN, Crippen GM. Size-independent comparison of protein three-dimensional structures. Proteins 1995;22:273–83.
  • Pronk S, Pall S, Schulz R, et al. GROMACS 4.5: a high-throughput and highly parallel open source molecular simulation toolkit. Bioinformatics 2013;29:845–54.
  • Eisenhaber F, Lijnzaad P, Argos P, et al. The double cubic lattice method: efficient approaches to numerical integration of surface area and volume and to dot surface contouring of molecular assemblies. J Comput Chem 1995;16:273–84.
  • Vriend G. WHAT IF: a molecular modeling and drug design program. J Mol Graph 1990;8:52–6.
  • Delano WL. The PyMOL Molecular Graphics System. 2002; Available from: http://www.pymol.org
  • Lawler J, Hynes RO. The structure of human thrombospondin, an adhesive glycoprotein with multiple calcium-binding sites and homologies with several different proteins. J Cell Biol 1986;103:1635–48.
  • Van Der Spoel D, Lindahl E, Hess B, et al. GROMACS: fast, flexible, and free. J Comput Chem 2005;26:1701–18.
  • Tina KG, Bhadra R, Srinivasan N. PIC: protein interactions calculator. Nucleic Acids Res 2007;35:W473–6.
  • Itoh N, Ornitz DM. Evolution of the Fgf and Fgfr gene families. Trends Genet 2004;20:563–9.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.