167
Views
6
CrossRef citations to date
0
Altmetric
Research Article

3D-QSAR pharmacophore-based virtual screening, molecular docking and molecular dynamics simulation toward identifying lead compounds for NS2B–NS3 protease inhibitors

, , , , , & show all
Pages 481-492 | Received 02 Mar 2017, Accepted 17 Jul 2017, Published online: 31 Jul 2017

References

  • Perera R, Kuhn JR. Structural proteomics of dengue virus. Curr Opin Microbiol. 2008;11:369–377.
  • Nall TA, Chappell KJ, Stoermer MJ, et al. Enzymatic characterization and homology model of a catalytically active recombinant West Nile virus NS3 protease. J Biol Chem. 2004;47:48535–48542.
  • Tomlinson SM, Watowich SJ. Anthracene-based inhibitors of dengue virus NS2B–NS3 protease. Antiviral Res. 2011;89:127–135.
  • Wichapong K, Nueangaudom A, Pianwanit S, et al. Identification of potential hit compounds for dengue virus NS2B/NS3 protease inhibitors by combining virtual screening and binding free energy calculations. Trop Biomed. 2013;30:388–408.
  • Lai H, Dou DF, Aravapalli S, et al. Design, synthesis and characterization of novel 1,2-benzisothiazol-3(2H)-one and 1,3,4-oxadiazole hybrid derivatives: potent inhibitors of dengue and West Nile virus NS2B/NS3 proteases. Bioorgan Med Chem. 2013;21:102–113.
  • Ganesh VK, Muller N, Judge K, et al. Identification and characterization of nonsubstrate based inhibitors of the essential dengue and West Nile virus proteases. Bioorg Med Chem. 2005;13:257–264.
  • Yusof R, Clum S, Wetzel M, et al. Purified NS2B/NS3 serine protease of dengue virus type 2 exhibits cofactor NS2B dependence for cleavage of substrates with dibasic amino acids in vitro. J Biol Chem. 2000;275:9963–9969.
  • Tomlinsona SM, Malmstroma RD, Russoa A, et al. Structure-based discovery of dengue virus protease inhibitors. Antiviral Res. 2009;82:110–114.
  • Noble CG, Shi PY. Structural biology of dengue virus enzymes: towards rational design of therapeutics. Antiviral Res. 2012;96:115–126.
  • Aleshin A, Shiryaev SA, Strongin AY, et al. Structural evidence for regulation and specificity of flaviviral proteases and evolution of the flaviviridae fold. Protein Sci. 2007;16:795–806.
  • Ang MJY, Yong GHJY Poulsen A, et al. Substrate-based peptidomimetic inhibitors of the Murray Valley encephalitis virus NS2B/NS3 serine protease: a P1eP4 SAR study. Eur J Med Chem. 2013;68:72–80.
  • Bollati M, Alvarez K, Assenbergc R, et al. Structure and functionality in flavivirus NS-proteins: perspectives for drug design. Antiviral Res. 2010;87:125–148.
  • Behnam MAM, Nitsche C, Vech SM, et al. C-terminal residue optimization and fragment merging: discovery of a potent peptide-hybrid inhibitor of dengue protease. ACS Med Chem Lett. 2014;5:1037–1042.
  • Erbel P, Schiering N, D’Arcy A, et al. Structural basis for the activation of flaviviral NS3 proteases from dengue and West Nile virus. Nat Struct Mol Biol. 2006;13:372–373.
  • Mueller NH, Yon C, Ganesh VK, et al. Characterization of the West Nile virus protease substrate specificity and inhibitors. Int J Biochem Cell Biol. 2007;39:606–614.
  • Noble CG, Chen YL, Dong P, et al. Strategies for development of dengue virus inhibitors. Antiviral Res. 2010;85:450–462.
  • Murthy HKM, Judge1 K, DeLucas L, et al. Crystal structure of dengue virus NS3 protease in complex with a Bowman–Birk inhibitor: implications for flaviviral polyprotein processing and drug design. J Mol Biol. 2000;301:759–767.
  • Laura DLC, Nguyen THD, Ozawa K, et al. Binding of low molecular weight inhibitors promotes large conformational changes in the dengue virus NS2B-NS3 protease: fold analysis by pseudocontact shifts. J Am Chem Soc. 2011;133:19205–19215.
  • Laird E, Blake J. Structure-based generation of viable leads from small combinatorial libraries. Curr Opin Drug Disco Dev. 2004;7:354–359.
  • Irwin JJ, Shoichet BK. ZINC: a free database of commercially available compounds for virtual screening. J Chem Inf Model. 2005;45:177–182.
  • Sidique S, Shiryaev SA, Ratnikov BI, et al. Structure–activity relationship and improved hydrolytic stability of pyrazole derivatives that are allosteric inhibitors of West Nile Virus NS2B–NS3 proteinase. Bioorg Med Chem Lett. 2009;19:5773–5777.
  • McPhillie MJ, Cain RM, Narramore S, et al. Computational methods to identify new antibacterial targets. Chem Biol Drug Des. 2015;85:22–29.
  • Ekonomiuk D, Su XC, Ozawa K, et al. Discovery of a non-peptidic inhibitor of West Nile virus NS3 protease by high-throughput docking. PLoS Negl Trop Dis. 2010;3:e365.
  • Tiew KC, Dou D, Teramoto T, et al. Inhibition of dengue virus and West Nile virus proteases by click chemistry-derived benz[d]isothiazol-3(2H)-one derivatives. Bioorg Med Chem. 2012;20:1213–1221.
  • Dou D, Viwanathan P, Li Y, et al. Design, synthesis, and in vitro evaluation of potential West Nile virus protease inhibitors based on the 1-Oxo-1,2,3,4- tetrahydroisoquinoline and 1-Oxo-1,2-dihydroisoquinoline scaffolds. J Comb Chem. 2010;12:836–843.
  • Lai H, Prasad S, Padmanabhan R. Characterization of 8-hydroxyquinoline derivatives containing aminobenzothiazole as inhibitors of dengue virus type 2 protease in vitro. Anti Res. 2013;97:74–80.
  • Morrey JD, Smee DF, Sidwell RW, et al. Identification of active antiviral compounds against a New York isolate of West Nile virus. Antiviral Res. 2002;55:107–116.
  • Borowski P, Lang M, Haag A, et al. Characterization of imidazo[4,5-d] pyridazine nucleosides as modulators of unwinding reaction mediated by West Nile virus nucleoside triphosphatase/helicase: evidence for activity on the level of substrate and/or enzyme. Antimicrob Agents Chemother. 2002;46:1231–1239.
  • Bodenreider C, Beer D, Keller TH, et al. A fluorescence quenching assay to discriminate between specific and nonspecific inhibitors of dengue virus protease. Anal Biochem. 2009;395:195–204.
  • Deng J, Li N, Liu H, et al. Discovery of novel small molecule inhibitors of dengue viral NS2BNS3 protease using virtual screening and scaffold hopping. J Med Chem. 2012;55:6278–6293.
  • Golbraikh A, Shen M, Xiao Z, et al. Rational selection of training and test sets for the development of validated QSAR models. J Comput Aided Mol Des. 2003;17:241–253.
  • Shoichet BK. Virtual screening of chemical libraries. Nature. 2004;432:862–865.
  • John S, Thangapandian S, Sakkiah S, et al. Potent bace-1 inhibitor design using pharmacophore modeling, in silico screening and molecular docking studies. BMC Bioinformatics. 2011;12(Suppl 1):S28.
  • Bharatham N, Bharatham K, Lee KW. Pharmacophore identification and virtual screening for methionyl-tRNA synthetase inhibitors. J Mol Graph Model. 2007;25:813–823.
  • Clement OO, Freeman CM, Hartmann RW, et al. Three dimensional pharmacophore modeling of human CYP17 inhibitors. Potential agents for prostate cancer therapy. J Med Chem. 2003;46:2345–2351.
  • Leach AR, Gillet VJ. An introduction to chemoinformatics. Dordrecht: Kluwer; 2011.
  • Golbraikh A, Bernard P, Chre´t. JR. Validation of proteinbased alignment in 3D quantitative structure–activity relationships with CoMFA models. Eur J Med Chem. 2000;35:123–136.
  • Brooks BR, Brooks CL, Mackerell AD, et al. CHARMM: the biomolecular simulation program. J Comput Chem. 2009;30:1545–1614.
  • Brooks BR, Bruccoleri RE, Olafson BD, et al. CHARMM: a program for macromolecular energy, minimization, and dynamics calculations. J Comput Chem. 1983;4:187–217.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.