103
Views
5
CrossRef citations to date
0
Altmetric
Research Article

Insight into the structural requirements of thiophene-3-carbonitriles-based MurF inhibitors by 3D-QSAR, molecular docking and molecular dynamics study

&
Pages 522-534 | Received 10 May 2017, Accepted 24 Jul 2017, Published online: 03 Aug 2017

References

  • Chellat MF, Raguž L, Riedl R. Targeting antibiotic resistance. Angew Chem Int Ed Engl. 2016;55:6600–6626.
  • Dumbre S, Derouaux A, Lescrinier E, et al. Synthesis of modified peptidoglycan precursor analogues for the inhibition of glycosyltransferase. J Am Chem Soc. 2012;134:9343–9351.
  • Anderson MS, Eveland SS, Onishi HR, et al. Kinetic mechanism of the Escherichia coli UDPMurNAc-tripeptide D-alanyl-D-alanine-adding enzyme: use of a glutathione S-transferase fusion. Biochemistry. 1996;35:16264–16269.
  • Bugg TD, Walsh CT. Intracellular steps of bacterial cell wall peptidoglycan biosynthesis: enzymology, antibiotics, and antibiotic resistance. Nat Prod Rep. 1992;9:199–215.
  • Mengin-Lecreulx D, van Heijenoort J, Park JT. Identification of the mpl gene encoding UDP-N-acetylmuramate: L-alanyl-gamma-D-glutamyl-meso-diaminopimelate ligase in Escherichia coli and its role in recycling of cell wall peptidoglycan. J Bacteriol. 1996;178:5347–5352.
  • Zoeiby AE, Sanschagrin F, Levesque RC. Structure and function of the Mur enzymes: development of novel inhibitors. Mol Microbiol. 2003;47:1–12.
  • Longenecker KL, Stamper GF, Hajduk PJ, et al. Structure of MurF from Streptococcus pneumoniae co-crystallized with a small molecule inhibitor exhibits interdomain closure. Protein Sci. 2005;14:3039–3047.
  • Bouhss A, Mengin-Lecreulx D, Blanot D, et al. Invariant amino acids in the Mur peptide synthetases of bacterial peptidoglycan synthesis and their modification by site-directed mutagenesis in the UDP-MurNAc:L-alanine ligase from Escherichia coli. Biochemistry. 1997;36:11556–11563.
  • Schulz GE. Binding of nucleotides by proteins. Curr Opin Struct Biol. 1992;2:61–67.
  • Baum EZ, Crespo-Carbone SM, Abbanat D, et al. Utility of muropeptide ligase for identification of inhibitors of the cell wall biosynthesis enzyme MurF. Antimicrob Agents Chemother. 2006;50:230–236.
  • Yan Y, Munshi S, Leiting B, et al. Crystal structure of Escherichia coli UDPMurNAc-tripeptide d-alanyl-d-alanine-adding enzyme (MurF) at 2.3 A resolution. J Mol Biol. 2000;304:435–445.
  • Miller DJ, Hammond SM, Anderluzzi D, et al. Aminoalkylphosphinate inhibitors of D-Ala-D-Ala adding enzyme. J Chem Soc Perkin Trans. 1998;1:131–142.
  • Gu YG, Florjancic AS, Clark RF, et al. Structure-activity relationships of novel potent MurF inhibitors. Bioorg Med Chem Lett. 2004;14:267–270.
  • Paradis-Bleau C, Lloyd A, Sanschagrin F, et al. Phage display-derived inhibitor of the essential cell wall biosynthesis enzyme MurF. BMC Biochem. 2008;9:33.
  • Murakami R, Muramatsu Y, Minami E, et al. A novel assay of bacterial peptidoglycan synthesis for natural product screening. J Antibiot (Tokyo). 2009;62:153–158.
  • Baum EZ, Crespo-Carbone SM, Foleno BD, et al. MurF inhibitors with antibacterial activity: effect on muropeptide levels. Antimicrob Agents Chemother. 2009;53:3240–3247.
  • Hrast M, Turk S, Sosič I, et al. Structure activity relationships of new cyanothiophene inhibitors of the essential peptidoglycan biosynthesis enzyme MurF. Eur J Med Chem. 2013;66:32–45.
  • Hrast M, Anderluh M, Knez D, et al. Design, synthesis and evaluation of second generation MurF inhibitors based on a cyanothiophene scaffold. Eur J Med Chem. 2014;73:83–96.
  • Khedkar SA, Malde AK, Coutinho EC. Design of inhibitors of the MurF enzyme of Streptococcus pneumoniae using docking, 3D-QSAR, and de novo design. J Chem Inf Model. 2007;47:1839–1846.
  • Taha MO, Atallah N, Al-Bakri AG, et al. Discovery of new MurF inhibitors via pharmacophore modeling and QSAR analysis followed by in-silico screening. Bioorg Med Chem. 2008;16:1218–1235.
  • Kovac A, Konc J, Vehar B, et al. Discovery of new inhibitors of D-alanine: D-alanine ligase by structure-based virtual screening. J Med Chem. 2008;51:7442–7448.
  • Turk S, Kovac A, Boniface A, et al. Discovery of new inhibitors of the bacterial peptidoglycan biosynthesis enzymes MurD and MurF by structure-based virtual screening. Bioorg Med Chem. 2009;17:1884–1889.
  • Shivakumar D, Williams J, Wu Y, et al. Prediction of absolute solvation free energies using molecular dynamics free energy perturbation and the OPLS force field. J Chem Theory Comput. 2010;6:1509–1519.
  • Dixon SL, Smondyrev AM, Knoll EH, et al. PHASE: a new engine for pharmacophore perception, 3D QSAR model development, and 3D database screening: 1. Methodology and preliminary results. J Comput Aided Mol Des. 2006;20:647–671.
  • Watts KS, Dalal P, Murphy RB, et al. ConfGen: a conformational search method for efficient generation of bioactive conformers. J Chem Inf Model. 2010;50:534–546.
  • Kirchmair J, Mark P, Distinto S, et al. Evaluation of the performance of 3D virtual screening protocols: RMSD comparisons, enrichment assessments and decoy selection what can we learn from earlier mistakes? J Comput Aided Mol Des. 2008;22:213–228.
  • Sheridan RP, Singh SB, Fluder EM, et al. Protocols for bridging the peptide to nonpeptide gap in topological similarity searches. J Chem Inf Comput Sci. 2001;41:1395–1406.
  • Stamper GF, Longenecker KL, Fry EH, et al. Structure-based optimization of MurF inhibitors. Chem Biol Drug Design. 2006;67:58–65.
  • Perdih A, Hrast M, Pureber K, et al. Furan-based benzene mono- and dicarboxylic acid derivatives as multiple inhibitors of the bacterial Mur ligases (MurC-MurF): experimental and computational characterization. J Comput Aided Mol Des. 2015;29:541–560.
  • Comess KM, Schurdak ME, Voorbach MJ, et al. An ultraefficient affinity-based high-throughout screening process: application to bacterial cell wall biosynthesis enzyme MurF. J Biomol Screen. 2006;11:743–754.
  • Sastry GM, Adzhigirey M, Day T, et al. Protein and ligand preparation: parameters, protocols, and influence on virtual screening enrichments. J Comput Aided Mol Des. 2013;27:221–234.
  • Jacobson MP, Pincus DL, Rapp CS, et al. A hierarchical approach to all-atom protein loop prediction. Proteins. 2004;55:351–367.
  • Friesner RA, Murphy RB, Repasky MP, et al. Extra precision glide: docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes. J Med Chem. 2006;49:6177–6196.
  • Li J, Abel R, Zhu K, et al. The VSGB 2.0 model: a next generation energy model for high resolution protein structure modeling. Proteins. 2011;79:2794–2812.
  • Guo Z, Mohanty U, Noehre J, et al. Probing the α-helical structural stability of stapled p53 peptides: molecular dynamics simulations and analysis. Chem Biol Drug Des. 2010;75:348–359.
  • Essmann U, Perera L, Berkowit ML, et al. A smooth particle mesh Ewald method. J Chem Phys. 1995;103:8577–8593.
  • Martyna GJ, Klein ML, Tuckerman M. Nose-Hoover chains – the canonical ensemble via continuous dynamics. J Chem Phys. 1992;97:2635–2643.
  • Martyna GJ, Tobias DJ, Klein ML. Constant-pressure molecular dynamics algorithms. J Chem Phys. 1994;01:4177–4189.
  • Golbraikh A, Tropsha A. Beware of q2! J Mol Graph Model. 2002;20:269–276.
  • Golbraikh A, Tropsha A. Predictive QSAR modeling based on diversity sampling of experimental datasets for the training and test set selection. J Comput Aided Mol Des. 2002;5:231–243.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.