153
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Probing voltage sensing domain of KCNQ2 channel as a potential target to combat epilepsy: a comparative study

, , , &
Pages 578-589 | Received 01 Mar 2017, Accepted 15 Aug 2017, Published online: 31 Aug 2017

References

  • Moshe SL, Perucca E, Ryvlin P, et al. Epilepsy: new advances. Lancet. 2015;385:884–898.
  • Loscher W, Klitgaard H, Twyman RE, et al. New avenues for anti-epileptic drug discovery and development. Nat Rev Drug Discov. 2013;12:757–776.
  • Schmidt D, Schachter SC. Drug treatment of epilepsy in adults. BMJ. 2014;348:130–136.
  • Maljevic S, Lerche H. Progress in brain research: genetics of epilepsy. Amsterdam: Munich Elsevier; 2014.
  • Wickenden AD, Roeloffs R, McNaughton-Smith G, et al. KCNQ potassium channels: drug targets for the treatment of epilepsy and pain. Expert Opin Ther Pat. 2004;14:457–469.
  • del Giudice EM, Coppola G, Scuccimarra G, et al. Benign familial neonatal convulsions (BFNC) resulting from mutation of the KCNQ2 voltage sensor. Eur J Hum Genet. 2000;8:994–997.
  • Peretz A, Pell L, Gofman Y, et al. Targeting the voltage sensor of Kv7.2 voltage-gated K+ channels with a new gating-modifier. Proc Natl Acad Sci USA. 2010;107:15637–15642.
  • Amato G, Roeloffs R, Rigdon GC, et al. N-pyridyl and pyrimidine benzamides as KCNQ2/Q3 potassium channel openers for the treatment of epilepsy. ACS Med Chem Lett. 2011;2:481–484.
  • Gao Z, Zhang T, Wu M, et al. Isoform-specific prolongation of Kv7 (KCNQ) potassium channel opening mediated by new molecular determinants for drug-channel interactions. J Biol Chem. 2010;285:28322–28332.
  • Wickenden AD, Krajewski JL, London B, et al. N-(6-Chloro-pyridin-3-yl)-3,4-difluoro-benzamide (ICA-27243): a novel, selective KCNQ2/Q3 potassium channel activator. Mol Pharmacol. 2008;73:977–986.
  • Padilla K, Wickenden AD, Gerlach AC, et al. The KCNQ2/3 selective channel opener ICA-27243 binds to a novel voltage-sensor domain site. Neurosci Lett. 2009;465:138–142.
  • Peretz A, Degani-Katzav N, Talmon M, et al. A tale of switched functions: from cyclooxygenase inhibition to M-channel modulation in new diphenylamine derivatives. PLoS One. 2007;13:e1332.
  • Li P, Chen Z, Xu H, et al. The gating charge pathway of an epilepsy-associated potassium channel accommodates chemical ligands. Cell Res. 2013;23:1106–1118.
  • Wilson GL, Lill MA. Integrating structure-based and ligand-based approaches for computational drug design. Future Med Chem. 2011;3:735–750.
  • Malik R, Mehta P, Srivastava S, et al. Pharmacophore modeling, 3D-QSAR and in silico ADMET prediction of N-pyridyl and pyrimidine benzamides as potent antiepileptic agents. J Recept Sig Transduct. 2016;37:259–266.
  • Maestro, v10.4 (Epik v3.4; Impact v6.9; Prime v4.2, Glide v6.9; LigPrep, v3.6; QikProp, v4.6). New York, NY: Schrodinger, LLC; 2015.
  • ADMET predictor™ v7.1. California: Simulation Plus Inc.; 2014.
  • Jorgensen WL. The many roles of computation in drug discovery. Science. 2004;303:1813–1818.
  • Butina D, Segall MD, Frankcombe K. Predicting ADME properties in silico: methods and models. Drug Discov Today. 2002;7:S83–S88.
  • Lipinski CA, Lombardo F, Dominy BW, et al. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev. 1997;23:3–25.
  • Ghose AK, Herbertz T, Hudkins RL, et al. Knowledge-based, central nervous system (CNS) lead selection and lead optimization for CNS drug discovery. ACS Chem Neurosci. 2012;3:50–68.
  • Sanguinetti MC, Tristani-Firouzi M. hERG potassium channels and cardiac arrhythmia. Nature 2006;440:463–469.
  • Center SA. Interpretation of liver enzymes. Vet Clin North Am Small Anim Pract. 2007;37:297–333.
  • Mithani SD, Bakatselou V, TenHoor CN, et al. Estimation of the increase in solubility of drugs as a function of bile salt concentration. Pharm Res. 1996;13:163–167.
  • Matthews EJ, Kruhlak NL, Benz RD, et al. Assessment of the health effects of chemicals in humans: I. QSAR estimation of the maximum recommended therapeutic dose (MRTD) and no effect level (NOEL) of organic chemicals based on clinical trial data. Curr Drug Discov Technol. 2004;1:61–76.
  • Abad-Zapatero C, Metz JT. Ligand efficiency indices as guideposts for drug discovery. Drug Discov Today. 2005;10:464–469.
  • Zhu T, Cao S, Su PC, et al. Hit identification and optimization in virtual screening: practical recommendations based on a critical literature analysis: miniperspective. J Med Chem. 2013;56:6560–6572.
  • Pavadai E, El Mazouni F, Wittlin S, et al. Identification of new human malaria parasite Plasmodium falciparum dihydroorotate dehydrogenase inhibitors by pharmacophore and structure-based virtual screening. J Chem Inf Model. 2016;56:548–562.
  • SciFinder. Columbus (OH): American Chemical Society; 2015. https://scifinder.cas.org/scifinder/login
  • Gaulton A, Bellis LJ, Bento AP, et al. ChEMBL: a large-scale bioactivity database for drug discovery. Nucleic Acids Res. 2012;40:D1100–D1107.
  • Kirchmair J, Markt P, Distinto S, et al. Evaluation of the performance of 3D virtual screening protocols: RMSD comparisons, enrichment assessments, and decoy selection-What can we learn from earlier mistakes? J Comput Aided Mol Des. 2008;22:213–228.
  • Nair SB, Teli MK, Pradeep H, et al. Computational identification of novel histone deacetylase inhibitors by docking based QSAR. Comput Biol Med. 2012;42:697–705.
  • Vyas VK, Ghate M, Goel A. Pharmacophore modeling, virtual screening, docking and in silico ADMET analysis of protein kinase B (PKB β) inhibitors. J Mol Graph Model. 2013;42:17–25.
  • Shahlaei M, Madadkar-Sobhani A, Mahnam K, et al. Homology modeling of human CCR5 and analysis of its binding properties through molecular docking and molecular dynamics simulation. Biochim Biophys Acta. 2011;1808:802–817.
  • Shen J, Zhang W, Fang H, et al. Homology modeling, molecular docking, and molecular dynamics simulations elucidated α-fetoprotein binding modes. BMC Bioinformatics. 2013;14:S6.
  • van de Waterbeemd H, Camenisch G, Folkers G, et al. Estimation of blood-brain barrier crossing of drugs using molecular size and shape, and H-bonding descriptors. J Drug Target. 1998;6:151–165.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.