128
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Identification of novel scaffolds to inhibit human mitotic kinesin Eg5 targeting the second allosteric binding site using in silico methods

& ORCID Icon
Pages 12-19 | Received 16 Aug 2017, Accepted 29 Sep 2017, Published online: 17 Oct 2017

References

  • Heuston E, Bronner CE, Kull FJ, et al. A kinesin motor in a force-producing conformation. BMC Struct Biol. 2010;10:1–12.
  • Ferenz NP, Gable A, Wadsworth P. Mitotic functions of kinesin-5. Semin Cell Dev Biol. 2010;21:255–259.
  • Valentine MT, Fordyce PM, Krzysiak TC, et al. Individual dimers of the mitotic kinesin motor Eg5 step processively and support substantial loads in vitro. Nat Cell Biol. 2006;8:470–476.
  • Falnikar A, Tole S, Baas PW. Kinesin-5, a mitotic microtubule-associated motor protein, modulates neuronal migration. Mol Biol Cell. 2011;22:1561–1574.
  • Kapitein LC, Peterman EJG, Kwok BH, et al. The bipolar mitotic kinesin Eg5 moves on both microtubules that it crosslinks. Nature. 2005;435:114–118.
  • Acar S, Carlson DB, Budamagunta MS, et al. The bipolar assembly domain of the mitotic motor kinesin-5. Nat Commun. 2013;4:1343
  • Weinger JS, Qiu M, Yang G, et al. A non-motor microtubule binding site in kinesin-5 is required for filament crosslinking and sliding. Curr Biol. 2011;21:154–160.
  • Goulet A, Behnke-Parks WM, Sindelar CV, et al. The structural basis of force generation by the mitotic motor kinesin-5. J Biol Chem. 2012;287:44654–44666.
  • Yamada HY, Gorbsky GJ. Spindle checkpoint function and cellular sensitivity to antimitotic drugs. Mol Cancer Ther. 2006;5:2963–2969.
  • Ding S, Zhao Z, Sun D, et al. Eg5 inhibitor, a novel potent targeted therapy, induces cell apoptosis in renal cell carcinoma. Tumour Biol. 2014;35:7659–7668.
  • Liu K, Ren Y, Pang L, et al. Papillary renal cell carcinoma: a clinicopathological and whole-genome exon sequencing study. Int J Clin Exp Pathol. 2015;8:8311–8335.
  • Saijo T, Ishii G, Ochiai A, et al. Eg5 expression is closely correlated with the response of advanced non-small cell lung cancer to antimitotic agents combined with platinum chemotherapy. Lung Cancer. 2006;54:217–225.
  • Guido BC, Ramos LM, Nolasco DO, et al. Impact of kinesin Eg5 inhibition by 3,4-dihydropyrimidin-2(1H)-one derivatives on various breast cancer cell features. BMC Cancer. 2015;15:283
  • Chan KS, Koh CG, Li HY. Mitosis-targeted anti-cancer therapies: where they stand. Cell Death Dis. 2012;3:e411.
  • Luo L, Parrish CA, Nevins N, et al. ATP-competitive inhibitors of the mitotic kinesin KSP that function via an allosteric mechanism. Nat Chem Biol. 2007;3:722–726.
  • Myers SM, Collins I. Recent findings and future directions for interpolar mitotic kinesin inhibitors in cancer therapy. Future Med Chem. 2016;8:463–489.
  • Kaan HYK, Ulaganathan V, Hackney DD, et al. An allosteric transition trapped in an intermediate state of a new kinesin-inhibitor complex. Biochem J. 2010;425:55–61.
  • Ulaganathan V, Talapatra SK, Rath O, et al. Structural insights into a unique inhibitor binding pocket in kinesin spindle protein. J Am Chem Soc. 2013;135:2263–2272.
  • Parrish CA, Adams ND, Auger KR, et al. Novel ATP-competitive kinesin spindle protein inhibitors. J Med Chem. 2007;50:4939–4952.
  • Knight SD, Parrish CA. Recent progress in the identification and clinical evaluation of inhibitors of the mitotic kinesin KSP. Curr Top Med Chem. 2008;8:888–904.
  • Friesner RA, Murphy RB, Repasky MP, et al. Extra precision glide: docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes. J Med Chem. 2006;49:6177–6196.
  • Duffy EM, Jorgensen WL. Prediction of properties from simulations: free energies of solvation in hexadecane, octanol, and water. J Am Chem Soc. 2000;122:2878–2888.
  • Irvine JD, Takahashi L, Lockhart K, et al. MDCK (Madin-Darby canine kidney) cells: a tool for membrane permeability screening. J Pharm Sci. 1999;88:28–33.
  • Maragakis P, Lindorff-Larsen K, Eastwood MP, et al. Microsecond molecular dynamics simulation shows effect of slow loop dynamics on backbone amide order parameters of proteins. J Phys Chem B. 2008;112:6155–6158.
  • Yokoyama H, Sawada J, Katoh S, et al. Structural basis of new allosteric inhibition in Kinesin spindle protein Eg5. ACS Chem Biol. 2015;10:1128–1136.
  • PubChem Compound Database; CID=18874674. [Internet] Available from: https://pubchem.ncbi.nlm.nih.gov/compound/18874674
  • Druey J, Meier K, Staehelin A. Pharmaceutical chemical studies on the heterocyclic series. 38. Pyridazines. XIII. Nucleophilic substitution reactions with 1-phenyl2-alkyl-3,6-dioxo-1,2,3,6-tetrahydropyridazines halogenated in position 4 or position 5. Pharm Acta Helv. 1963;38:498–507.
  • Seada M, Fawzy MM, Jahine H, et al. Synthesis and biological activities of some new pyridazine derivatives. J Chin Chem Soc. 1989;36:241–249.
  • Butnariu RM, Mangalagiu II. New pyridazine derivatives: synthesis, chemistry and biological activity. Bioorganic Med Chem. 2009;17:2823–2829.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.