193
Views
3
CrossRef citations to date
0
Altmetric
Research Article

TRH receptor mobility in the plasma membrane is strongly affected by agonist binding and by interaction with some cognate signaling proteins

, &
Pages 20-26 | Received 30 May 2017, Accepted 11 Oct 2017, Published online: 14 Nov 2017

References

  • Peters R. Lateral mobility of proteins and lipids in the red cell membrane and the activation of adenylate cyclase by beta-adrenergic receptors. FEBS Lett. 1988;234:1–7.
  • Fernandes CC, Berg DK, Gomez-Varela D. Lateral mobility of nicotinic acetylcholine receptors on neurons is determined by receptor composition, local domain, and cell type. J Neurosci. 2010;30:8841–8851.
  • Ganguly S, Paila YD, Chattopadhyay A. Metabolic depletion of sphingolipids enhances the mobility of the human serotonin(1A) receptor. Biochem Biophys Res Commun. 2011;411:180–184.
  • Barak LS, Ferguson SSG, Zhang J, et al. Internal trafficking and surface mobility of a functionally intact beta(2)-adrenergic receptor-green fluorescent protein conjugate. Mol Pharmacol. 1997;51:177–184.
  • Pucadyil TJ, Kalipatnapu S, Hirikumar KG, et al. G-protein-dependent cell surface dynamics of the human serotonin(1A) receptor tagged to yellow fluorescent protein. Biochemistry. 2004;43:15852–15862.
  • Carayon K, Mouledous L, Combedazou A, et al. Heterologous regulation of mu-opioid (MOP) receptor mobility in the membrane of SH-SY5Y cells. J Biol Chem. 2014;289:28697–28706.
  • Cezanne L, Lecat S, Lagane B, et al. Dynamic confinement of NK2 receptors in the plasma membrane: improved frap analysis and biological relevance. J Biol Chem. 2004;79:45057–45067.
  • Sharma K, Fong DK, Craig AM. Postsynaptic protein mobility in dendritic spines: long-term regulation by synaptic NMDA receptor activation. Mol Cell Neurosci. 2006;31:702–712.
  • Melkes B, Hejnova L, Novotny J. Biased μ-opioid receptor agonists diversely regulate lateral mobility and functional coupling of the receptor to its cognate G proteins. Naunyn Schmiedebergs Arch Pharmacol. 2016;389:1289–1300.
  • Jones BW, Hinkle PM. Beta-arrestin mediates desensitization and internalization but does not affect dephosphorylation of the thyrotropin-releasing hormone receptor. J Biol Chem. 2005;280:38346–38354.
  • Gehret AU, Jones BW, Tran PN, et al. Role of helix 8 of the thyrotropin-releasing hormone receptor in phosphorylation by G protein-coupled receptor kinase. Mol Pharmacol. 2010;77:288–297.
  • Ostasov P, Bourova L, Hejnova L, et al. Disruption of the plasma membrane integrity by cholesterol depletion impairs effectiveness of TRH receptor-mediated signal transduction via G(q)/G(11)alpha proteins. J Recept Signal Transduct. 2007;27:335–352.
  • Brejchova J, Sykora J, Ostasov P, et al. TRH-receptor mobility and function in intact and cholesterol-depleted plasma membrane of HEK293 cells stably expressing TRH-R-eGFP. Biochim Biophys Acta. 2015;1848:781–796.
  • Drastichova Z, Novotny J. Identification of a preassembled TRH receptor-G(q/11) protein complex in HEK293 cells. Cell Struct Funct. 2012;37:1–12.
  • Rapsomaniki MA, Kotsantis P, Symeonidou IE, et al. easyFRAP: an interactive, easy-to-use tool for qualitative and quantitative analysis of FRAP data. Bioinformatics. 2012;28:1800–1801.
  • Ostasov P, Krusek J, Durchankova D, et al. Ca2+ responses to thyrotropin-releasing hormone and angiotensin II: the role of plasma membrane integrity and effect of G(11)alpha protein overexpression on homologous and heterologous desensitization. Cell Biochem Funct. 2008;26:264–274.
  • Ashworth R, Yu R, Nelson EJ, et al. Visualization of the thyrotropin-releasing hormone receptor and its ligand during endocytosis and recycling. Proc Natl Acad Sci USA. 1995;92:512–516.
  • Drmota T, Novotny J, Gould GW, et al. Visualization of distinct patterns of subcellular redistribution of the thyrotropin-releasing hormone receptor-1 and G(q)alpha/G(11)alpha induced by agonist stimulation. Biochem J. 1999;340:529–538.
  • Lajoie P, Partridge EA, Guay G, et al. Plasma membrane domain organization regulates EGFR signaling in tumor cells. J Cell Biol. 2007;179:341–356.
  • Maurel D, Banala S, Laroche T, et al. Photoactivatable and photoconvertible fluorescent probes for protein labeling. ACS Chem Biol. 2010;5:507–516.
  • Beletkaia E, Fenz SF, Pomp W, et al. CXCR4 signaling is controlled by immobilization at the plasma membrane. Biochim Biophys Acta. 2016;1863:607–616.
  • Stenoien DL, Patel K, Mancini MG, et al. FRAP reveals that mobility of oestrogen receptor-alpha is ligand- and proteasome-dependent. Nat Cell Biol. 2001;3:15–23.
  • Schaaf MJM, Cidlowski JA. Molecular determinants of glucocorticoid receptor mobility in living cells: the importance of ligand affinity. Mol Cell Biol. 2003;23:1922–1934.
  • Marchetti L, Callegari A, Luin S, et al. Ligand signature in the membrane dynamics of single TrkA receptor molecules. J Cell Sci. 2013;126:4445–4456.
  • Senning EN, Gordon SE. Activity and Ca2+ regulate the mobility of TRPV1 channels in the plasma membrane of sensory neurons. Elife. 2015;2015:4.
  • Milan-Lobo L, Gsandtner I, Gaubitzer E, et al. Subtype-specific differences in corticotropin-releasing factor receptor complexes detected by fluorescence spectroscopy. Mol Pharmacol. 2009;76:1196–1210.
  • Calebiro D, Rieken F, Wagner J, et al. Single-molecule analysis of fluorescently labeled G-protein-coupled receptors reveals complexes with distinct dynamics and organization. Proc Natl Acad Sci USA. 2013;110:743–748.
  • Lalo U, Allsopp RC, Mahaut-Smith MP, et al. P2X1 receptor mobility and trafficking; regulation by receptor insertion and activation. J Neurochem. 2010;113:1177–1187.
  • Ahn S, Wei HJ, Garrison TR, et al. Reciprocal regulation of angiotensin receptor-activated extracellular signal-regulated kinases by beta-arrestins 1 and 2. J Biol Chem. 2004;279:7807–7811.
  • Song GJ, Jones BW, Hinkle PM. Dimerization of the thyrotropin-releasing hormone receptor potentiates hormone-dependent receptor phosphorylation. Proc Natl Acad Sci USA. 2007;104:18303–18308.
  • Li JL, Xiang B, Su WJ, et al. Agonist-induced formation of opioid receptor-G protein-coupled receptor kinase (GRK)-G beta gamma complex on membrane is required for GRK2 function in vivo. J Biol Chem. 2003;278:30219–30226.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.