208
Views
20
CrossRef citations to date
0
Altmetric
Research Article

Pharmacophore modeling, molecular docking and molecular dynamics studies on natural products database to discover novel skeleton as non-purine xanthine oxidase inhibitors

, , , , &
Pages 246-255 | Received 22 Apr 2018, Accepted 10 May 2018, Published online: 29 May 2018

References

  • Neogi T. Clinical Practice. Gout. N Engl J Med. 2011;364:443–452.
  • Kuo CF, Grainge MJ, Mallen C, et al. Rising burden of gout in the UK but continuing suboptimal management: a nationwide population study. Ann Rheum Dis. 2015;74:661–667.
  • Roddy E, Choi HK. Epidemiology of gout. Rheum Dis Clin North Am. 2014;40:155–175.
  • Ting K, Gill TK, Keen H, et al. Prevalence and associations of gout and hyperuricaemia: results from an Australian population-based study. Intern Med J. 2016;46:566–573.
  • Enroth C, Eger BT, Okamoto K, et al. Crystal structures of bovine milk xanthine dehydrogenase and xanthine oxidase: structure-based mechanism of conversion. Proc Natl Acad Sci USA. 2000;97:10723–10728.
  • Hille R, Hall J, Basu P. The mononuclear molybdenum enzymes. Chem Rev. 2014;114:3963–4038.
  • Okamoto K, Eger BT, Nishino T, et al. An extremely potent inhibitor of xanthine oxidoreductase: crystal structure of the enzyme-inhibitor complex and mechanism of inhibition. J Biol Chem. 2003;278:1848–1855.
  • Fukunari A, Okamoto K, Nishino T, et al. Y-700 [1-[3-Cyano-4-(2,2-dimethylpropoxy)phenyl]-1H-pyrazole-4-carboxylic acid]: a potent xanthine oxidoreductase inhibitor with hepatic excretion. J Pharmacol Exp Ther. 2004;311:519–528.
  • Okamoto K, Matsumoto K, Hille R, et al. The crystal structure of xanthine oxidoreductase during catalysis: implications for reaction mechanism and enzyme inhibition. Proc Natl Acad Sci USA. 2004;101:7931–7936.
  • Pacher P, Nivorozhkin A, Szabo C. Therapeutic effects of xanthine oxidase inhibitors: renaissance half a century after the discovery of allopurinol. Pharmacol Rev. 2006;58:87–114.
  • Hande KR, Noone RM, Stone WJ. Severe allopurinol toxicity: description and guidelines for prevention in patients with renal insufficiencyAm J Med. 1984;76:47–56.
  • Gibson T, Rodgers V, Potter C, et al. Allopurinol treatment and its effect on renal functionin gout: a controlled study. Ann. Rheum. Dis. 1982;41:59–65.
  • Takano Y, Hase-Aoki K, Horiuchi H, et al. Selectivity of febuxostat, a novel non-purine inhibitor of xanthine oxidase/xanthine dehydrogenase. Life Sci. 2005;76:1835–1847.
  • Chen S, Zhang T, Wang J, et al. Synthesis and evaluation of 1-hydroxy/methoxy-4-methyl-2-phenyl-1H-imidazole-5-carboxylic acid derivatives as non-purine xanthine oxidase inhibitors. Eur J Med Chem. 2015;103:343–353.
  • Shukla S, Kumar D, Ojha R, et al. 4,6-Diaryl/heteroarylpyrimidin-2(1H)-ones as a new class of xanthine oxidase inhibitors. Arch Pharm (Weinheim). 2014;347:486–495.
  • Guan Q, Cheng Z, Ma X, et al. Synthesis and bioevaluation of 2-phenyl-4-methyl-1,3-selenazole-5-carboxylic acids as potent xanthine oxidase inhibitors. Eur J Med Chem. 2014;85:508–516.
  • Singh H, Sharma S, Ojha R, et al. Synthesis and evaluation of naphthoflavones as a new class of non purine xanthine oxidase inhibitors. Bioorg Med Chem Lett. 2014;24:4192–4197.
  • Nepali K, Agarwal A, Sapra S, et al. N-(1,3-Diaryl-3-oxopropyl)amides as a new template for xanthine oxidase inhibitors. Bioorg Med Chem. 2011;19:5569–5576.
  • Leigh M, Raines DJ, Castillo CE, et al. Inhibition of xanthine oxidase by thiosemicarbazones, hydrazones and dithiocarbazates derived from hydroxy-substituted benzaldehydes. Chem Med Chem. 2011;6:1107–1118.
  • Hu L, Hu H, Wu W, et al. Discovery of novel xanthone derivatives as xanthine oxidase inhibitors. Bioorg Med Chem Lett. 2011;21:4013–4015.
  • Shi DH, Huang W, Li C, et al. Design, synthesis and molecular modeling of aloe-emodin derivatives as potent xanthine oxidase inhibitors. Eur J Med Chem. 2014;75:289–296.
  • Shen L, Ji HF. Insights into the inhibition of xanthine oxidase by curcumin. Bioorg Med Chem Lett. 2009;19:5990–5993.
  • Yang SY. Pharmacophore modeling and applications in drug discovery: challenges and recent advances. Drug Discov Today. 2010;15:444–450.
  • Lu SH, Wu JW, Liu HL, et al. The discovery of potential acetylcholinesterase inhibitors: a combination of pharmacophore modeling, virtual screening, and molecular docking studies. J Biomed Sci. 2011;18:8.
  • Sakkiah S, Senese S, Yang Q, et al. Dynamic and multi-pharmacophore modeling for designing polo-box Domain inhibitors. PLoS One. 2014;9:e101405
  • Arooj MA, Sakkiah S, Kim S, et al. A combination of receptor-based pharmacophore modeling & QM techniques for identification of human chymase inhibitors. PLoS One. 2013; 8:e63030
  • Ekins S, Freundlich JS, Coffee MA. A common feature pharmacophore for FDA-approved drugs inhibiting the Ebola virus. F1000Res. 2014;3:277
  • Tripuraneni NS, Azam MA. Pharmacophore modeling, 3D-QSAR and docking study of 2-phenylpyrimidine analogues as selective PDE4B inhibitors. J Theor Biol. 2016;394:117–126.
  • Godwin RC, Melvin R, Salsbury FR. Molecular dynamics simulations and computer-aided drug discovery. In: Zhang W, editor. Computer-aided drug discovery: methods in pharmacology and toxicology. New York (NY): Humana Press; 2015.
  • Mccammon JA, Gelin BR, Karplus M. Dynamics of folded proteins. Nature 1977;267:585–590.
  • Shimizu K, Lizuka M, Takigawa Y. Kissei pharmaceutical CO., LTD. Indolizine derivative and use there of medical purposes. United States Patent US 20120015972. 2012 Jan 19.
  • Meslamani J, Li J, Sutter J, et al. Protein-ligand-based pharmacophores: generation and utility assessment in computational ligand profiling. J Chem Inf Model. 2012;52:943–955.
  • He Y, Jiang L, Yang Z, et al. A combination of pharmacophore modeling, molecular docking, and virtual screening for P2Y12 receptor antagonists from Chinese herbs. Can J Chem. 2015;93:311–316.
  • Sterling T, Irwin JJ. ZINC 15-ligand discovery for everyone. J Chem Inf Model. 2015;55:2324–2337.
  • Jones G, Willett P, Taylor R, et al. Development and Validation of a genetic algorithm for flexible docking. J Mol Biol. 1997;267:727–748.
  • Cole JC, Verdonk ML, Murray CW, et al. Improved protein-ligand docking using GOLD. Proteins 2003; 52:609–623.
  • RCSB Protein Data Bank. Structure ID: 1VDV. [cited 2016 Aug]. Available from: http://www.rcsb.org.
  • Triballeau N, Acher F, Brabet I, et al. Virtual screening workflow development guided by the “receiver operating characteristic” curve approach. Application to high-throughput docking on metabotropic glutamate receptor subtype 4. J Med Chem. 2005;48:2534–2547.
  • BioBioPha. [cited 2016 Sept]. Available from: http://www.biobiopha.com.
  • Hevener KE, Zhao W, Ball DM, et al. Validation of molecular docking programs for virtual screening against dihydropteroate synthase. J Chem Inf Model. 2009;49:444–460.
  • Elam C, Lape M, Paula S. Comparison of current docking tools for the simulation of inhibitor binding by the transmembrane domain of the sarco/endoplasmic reticulum calcium ATPase. Biophys Chem. 2010;150:88–97.
  • Hirota H, Satou K, Onodera K. Evaluations of molecular docking programs for virtual screening. J Chem Inf Model. 2007; 47:1609–1618.
  • Kirchmair J, Markt P, Distinto S, et al. Evaluation of the performance of 3Dvirtual screening protocols: RMSD comparisons, enrichment assessments, and decoy selection-what can we learn from earlier mistakes? J Comput Aided Mol Des. 2008; 22:213–228.
  • Berendsen HJC, Spoel DVD, Drunen RV. GROMACS: A message-passing parallel molecular dynamics implementation. Comput Phys Commun. 1995;91:43–56.
  • Spoel DVD, Lindahl E, Hess B, et al. GROMACS: fast, flexible, and free. J Comput Chem. 2005; 26:1701–1719.
  • Pronk S, Páll S, Schulz R, et al. GROMACS 4.5: a high-throughput and highly parallel open source molecular simulation toolkit. Bioinformatics. 2013;29:845–854.
  • Gaussian 09, Revision A.01, Frisch MJ, Trucks GW, Schlegel HB, et al. Gaussian, Inc., Wallingford CT, 2009.
  • Wang J, Wolf RM, Caldwell JW, et al. Development and testing of a general amber force field. J Comput Chem. 2004; 25:1157–1174.
  • Case D, Darden T, Cheatham T, et al. AMBER 12. San Francisco: University of California; 2012.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.