145
Views
9
CrossRef citations to date
0
Altmetric
Research Article

In silico screening and identification of potential GSK3β inhibitors

, &
Pages 279-289 | Received 21 Oct 2017, Accepted 05 Dec 2017, Published online: 27 Jun 2018

References

  • Embi N, Rylatt DB, Cohen P. Glycogen synthase kinase-3 form rabbit skeletal muscle: separation from cylic-AMP-dependent protein kinase and phosphorylase kinase. Eur J Biochem. 1980;107:519–527.
  • Woodgett JR. Molecular cloning and expression of glycogen synthase kinase-3/factor A. Embo J. 1990;9:2431–2438.
  • Mukai F, Ishiguro K, Sano Y, et al. Alternative splicing isoform of tau protein kinase I/glycogen synthase kinase 3beta. J Neurochem. 2002;81:1073–1083.
  • Grimes CA, Jope RS. The multifaceted roles of glycogen synthase kinase 3beta in cellular signaling. Prog Neurobiol. 2001;65:391–426.
  • Hur EM, Zhou FQ. GSK3 signalling in neural development. Nat Rev Neurosci. 2010;11:539–551.
  • Sutherland C. What are the bona fide GSK3 substrates? Int J Alzheimers Dis. 2011;2011:23.
  • Pandey MK, DeGrado TR. Glycogen synthase kinase-3 (GSK-3)-targeted therapy and imaging. Theranostics. 2016;6:571–593.
  • Andrade EL, Bento AF, Cavalli J, et al. Non-clinical studies required for new drug development-part I: early in silico and in vitro studies, new target discovery and validation, proof of principles and robustness of animal studies. Braz J Med Biol Res. 2016;49:1–9.
  • Ekins S, Mestres J, Testa B. In silico pharmacology for drug discovery: methods for virtual ligand screening and profiling. Br J Pharmacol. 2007;152:9–20.
  • Dallakyan S, Olson AJ. Small-molecule library screening by docking with PyRx. Chem Biol Methods Mol Biol. 2015;1263:243–250.
  • ter Haar E, Coll JT, Austen DA, et al. Structure of GSK3beta reveals a primed phosphorylation mechanism. Nat Struct Biol. 2001;8:593–596.
  • Huang CC, Meng EC, Morris JH, et al. Enhancing UCSF Chimera through web services. Nucleic Acids Res. 2014;42:W478–W484.
  • Bhat R, Xue Y, Berg S, et al. Structural insights and biological effects of glycogen synthase kinase 3-specific inhibitor AR-A014418. J Biol Chem. 2003;278:45937–45945.
  • Gentile G, Merlo G, Pozzan A, et al. 5-Aryl-4-carboxamide-1,3-oxazoles: potent and selective GSK-3 inhibitors. Bioorg Med Chem Lett. 2012;22:1989–1994.
  • Sivaprakasam P, Han X, Civiello RL, et al. Discovery of new acylaminopyridines as GSK-3 inhibitors by a structure guided in-depth exploration of chemical space around a pyrrolopyridinone core. Bioorg Med Chem Lett. 2015;25:1856–1863.
  • Bertrand JA, Thieffine S, Vulpetti A, et al. Structural characterization of the GSK-3beta active site using selective and non-selective ATP-mimetic inhibitors . J Mol Biol. 2003;333:393–407.
  • Menichincheri M, Bargiotti A, Berthelsen J. First Cdc7 kinase inhibitors: pyrrolopyridinones as potent and orally active antitumor agents. 2. lead discovery. J Med Chem. 2008;52:293–307.
  • Berg S, Bergh M, Hellberg S. Discovery of novel potent and highly selective glycogen synthase kinase-3β (GSK3β) inhibitors for Alzheimer’s disease: design, synthesis, and characterization of pyrazines. J Med Chem. 2012;55:9107–9119.
  • Allard J, Nikolcheva T, Gong L, et al. From genetics to therapeutics: the Wnt pathway and osteoporosis. 2004. Located at: http://www.rcsb.org/pdb/explore/explore.do?structureId=1R0E.
  • Saitoh M, Kunitomo J, Kimura E. 2-{3-[4-(Alkylsulfinyl) phenyl]-1-benzofuran-5-yl}-5-methyl-1, 3, 4-oxadiazole derivatives as novel inhibitors of glycogen synthase kinase-3β with good brain permeability. J Med Chem. 2009;52:6270–6286.
  • Gentile G, Bernasconi G, Pozzan A. Identification of 2-(4-pyridyl)thienopyridinones as GSK-3b inhibitors. Bioorg Med Chem Lett. 2011;21:4823–4827.
  • Kim HT, Lee SC, Chang HJ. Crystal Structure of GSK3beta in complex with a Imidazolopyridine inhibitor. 2012. Located at: http://www.rcsb.org/pdb/explore/explore.do?structureId=4DIT.
  • Arnost M, Pierce A, ter Haar E, et al. 3-Aryl-4-(arylhydrazono)-1H-pyrazol-5-ones: Highly ligand efficient and potent inhibitors of GSK3beta. Bioorg Med Chem Lett. 2010;20:1661–1664.
  • Wagner FF, Bishop JA, Gale JP, et al. Inhibitors of glycogen synthase kinase 3 with exquisite kinome-wide selectivity and their functional effects. ACS Chem Biol. 2016;11:1952–1963.
  • Morris GM, Huey R, Lindstrom W, et al. AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem. 2009;30:2785–2791.
  • Tusar M, Minovski N, Fjodorova N, et al. In silico assessment of adverse effects of a large set of 6-fluoroquinolones obtained from a study of tuberculosis chemotherapy. Curr Drug Saf. 2012;7:313–320.
  • Benfenati E, Manganaro A, Gini GC. VEGA-QSAR: AI inside a platform for predictive toxicology. Proceedings of workshop “popularize artificial intelligence 2013”, Turin. Italy Published on CEUR Workshop Proceedings 2013;1107:21–28.
  • Sander T, Freyss J, von Korff M, et al. DataWarrior: an open-source program for chemistry aware data visualization and analysis. J Chem Inf Model. 2015;55:460–473.
  • Lipinski CA, Lombardo F, Dominy BW, et al. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Ad Drug Deliv Rev. 2012;64:4–17.
  • Zhao YH, Le J, Abraham MH, et al. Evaluation of human intestinal absorption data and subsequent derivation of a quantitative structure–activity relationship (QSAR) with the Abraham descriptors. J Pharm Sci. 2001;90:749–784.
  • Mälkiä A, Murtomäki L, Urtti A, et al. Drug permeation in biomembranes: in vitro and in silico prediction and influence of physicochemical properties. Eur J Pharm Sci. 2004;23:13–47.
  • Tsaioun K, Kates SA. ADMET for medicinal chemists: a practical guide. New Jersey (NJ): John Wiley & Sons; 2011.
  • Vyas VK, Ghate M, Goel A. Pharmacophore modeling, virtual screening, docking and in silico ADMET analysis of protein kinase B (PKB β) inhibitors. J Mol Graph Model. 2013;42:17–25.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.