164
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Analysis of interleukin 23 and 7G10 interactions for computational design of lead antibodies against immune-mediated inflammatory diseases

, , ORCID Icon, , , ORCID Icon & show all
Pages 327-334 | Received 25 Nov 2017, Accepted 12 Jul 2018, Published online: 01 Nov 2018

References

  • Barderas R, Desmet J, Timmerman P, et al. Affinity maturation of antibodies assisted by in silico modeling. Proc Natl Acad Sci USA. 2008;1;105:9029–9034.
  • Lippow SM, Wittrup KD, Tidor B. Computational design of antibody-affinity improvement beyond in vivo maturation. Nat Biotechnol. 2007;25:1171–1176.
  • Verma R, Yadav M, Pradhan D, et al. Probing binding mechanism of interleukin-6 and olokizumab: in silico design of potential lead antibodies for autoimmune and inflammatory diseases. J Recept Signal Transduct Res. 2016;36:601–616.
  • Kuroda D, Shirai H, Jacobson MP, et al. Computer-aided antibody design. Protein Eng Des Sel. 2012;25:507–521.
  • Kleinschek MA, Muller U, Brodie SJ, et al. IL-23 enhances the inflammatory cell response in Cryptococcus neoformans infection and induces a cytokine pattern distinct from IL-12. J Immunol Baltim Md 1950. 2006;176:1098–1106. 15
  • Lupardus PJ, Garcia KC. The structure of interleukin-23 reveals the molecular basis of p40 subunit sharing with interleukin-12. J Mol Biol. 2008;382:931–941. 17
  • McKenzie BS, Kastelein RA, Cua DJ. Understanding the IL-23-IL-17 immune pathway. Trends Immunol 2006;27:17–23.
  • Oppmann B, Lesley R, Blom B, et al. Novel p19 protein engages IL-12p40 to form a cytokine, IL-23, with biological activities similar as well as distinct from IL-12. Immunity. 2000;13:715–725.
  • Parham C, Chirica M, Timans J, et al. A receptor for the heterodimeric cytokine IL-23 is composed of IL-12Rbeta1 and a novel cytokine receptor subunit, IL-23R. J Immunol Baltim Md 1950. 2002;168:5699–5708.
  • Kastelein RA, Hunter CA, Cua DJ. Discovery and biology of IL-23 and IL-27: related but functionally distinct regulators of inflammation. Annu Rev Immunol. 2007;25:221–242.
  • Tato CM, Cua DJ. Reconciling id, ego, and superego within interleukin-23. Immunol Rev. 2008;226:103–111.
  • Ghilardi N, Kljavin N, Chen Q, et al. Compromised humoral and delayed-type hypersensitivity responses in IL-23-deficient mice. J Immunol Baltim Md 1950. 2004;172:2827–2833.
  • Kikly K, Liu L, Na S, et al. The IL-23/Th(17) axis: therapeutic targets for autoimmune inflammation. Curr Opin Immunol. 2006;18: 670–675.
  • Hunter CA. New IL-12-family members: IL-23 and IL-27, cytokines with divergent functions. Nat Rev Immunol. 2005;5:521–531.
  • Kopp T, Lenz P, Bello-Fernandez C, et al. IL-23 Production by Cosecretion of Endogenous p19 and Transgenic p40 in Keratin 14/p40 Transgenic Mice: Evidence for Enhanced Cutaneous Immunity. J Immunol. 2003;170:5438–5444.
  • Lankford CSR, Frucht DM. A unique role for IL-23 in promoting cellular immunity. J Leukoc Biol. 2003;73:49–56.
  • Iwakura Y, Ishigame H. The IL-23/IL-17 axis in inflammation. J Clin Invest 2006;116:1218–1222.
  • Stritesky GL, Yeh N, Kaplan MH. IL-23 promotes maintenance but not commitment to the Th17 lineage. J Immunol Baltim Md 1950. 2008;181:5948–5955.
  • Bartlett HS, Million RP. Targeting the IL-17-T(H)17 pathway. Nat Rev Drug Discov 2015;14:11–12.
  • Sandborn WJ, Feagan BG, Fedorak RN, et al. A randomized trial of Ustekinumab, a human interleukin-12/23 monoclonal antibody, in patients with moderate-to-severe Crohn’s disease. Gastroenterology. 2008;135:1130–1141.
  • Beyer BM, Ingram R, Ramanathan L, et al. Crystal structures of the pro-inflammatory cytokine interleukin-23 and its complex with a high-affinity neutralizing antibody. J Mol Biol. 2008;382: 942–955.
  • Van Durme J, Delgado J, Stricher F, et al. A graphical interface for the FoldX forcefield. Bioinformatics. 2011;27:1711–1712.
  • Barlow DJ, Edwards MS, Thornton JM. Continuous and discontinuous protein antigenic determinants. Nature. 1986;322: 747–748.
  • Krawczyk K, Baker T, Shi J, et al. Antibody i-Patch prediction of the antibody binding site improves rigid local antibody–antigen docking. Protein Eng Des Sel. 2013;26:621–629.
  • Janson G, Zhang C, Prado MG, et al. PyMod 2.0: improvements in protein sequence-structure analysis and homology modeling within PyMOL. Bioinforma Oxf Engl. 2017;0133:444–446.
  • Wallace AC, Laskowski RA, Thornton JM. LIGPLOT: a program to generate schematic diagrams of protein-ligand interactions. Protein Eng Des Sel. 1995;8:127–134.
  • Pierce BG, Wiehe K, Hwang H, et al. ZDOCK server: interactive docking prediction of protein-protein complexes and symmetric multimers. Bioinforma Oxf Engl. 2014;30:1771–1773.
  • Kozakov D, Hall DR, Xia B, et al. The ClusPro web server for protein-protein docking. Nat Protoc. 2017;12:255–278.
  • Chaudhury S, Berrondo M, Weitzner BD, et al. Benchmarking and Analysis of Protein Docking Performance in Rosetta v3.2. PLOS ONE. 2011;6:e22477.
  • Brooks BR, Brooks CL, Mackerell AD, et al. CHARMM: the biomolecular simulation program. J Comput Chem 2009;30:1545–1614.
  • Fogolari F, Corazza A, Viglino P, et al. Molecular Dynamics Simulation Suggests Possible Interaction Patterns at Early Steps of β2-Microglobulin Aggregation. Biophys J. 2007;92:1673–1681.
  • Abraham M, Murtola T, Schulz R, et al. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 2015;1:19–25.
  • Berendsen HJC, Postma JPM. Gunsteren WF van, Hermans J. Interaction Models for Water in Relation to Protein Hydration. In: Pullman B, editor. Intermolecular Forces [Internet]. Springer, Dordrecht; 1981 [cited 2017 Nov 7]. p. 331–42. (The Jerusalem Symposia on Quantum Chemistry and Biochemistry). Available from: https://link.springer.com/chapter/10.1007/978-94-015-7658-1_21
  • Bussi G, Donadio D, Parrinello M. Canonical sampling through velocity rescaling. J Chem Phys 2007;126:014101.
  • Hess B, Bekker H, Berendsen H, GEM, Fraaije J. LINCS: A Linear Constraint Solver for molecular simulations. J Comput Chem. 1997;18:1463.
  • Darden T, York D, Pedersen L. Particle mesh ewald: an nlog (n) method for ewald sums in large systems. J Chem Phys. 1993;98: 10089–10092.
  • Paissoni C, Spiliotopoulos D, Musco G, et al. GMXPBSA 2.1: A GROMACS tool to perform MM/PBSA and computational alanine scanning. Comput Phys Commun. 2015;186:105–107.
  • Cauerhff A, Goldbaum FA, Braden BC. Structural mechanism for affinity maturation of an anti-lysozyme antibody. Proc Natl Acad Sci U S A. 2004;101:3539–3544.
  • Presta LG. Selection, design, and engineering of therapeutic antibodies. J Allergy Clin Immunol. 2005;116:731–736.
  • Rajpal A, Beyaz N, Haber L, et al. A general method for greatly improving the affinity of antibodies by using combinatorial libraries. Proc Natl Acad Sci U S A. 2005;102:8466–8471.
  • Schymkowitz J, Borg J, Stricher F, et al. The FoldX web server: an online force field. Nucleic Acids Res. 2005;33:W382–W388.
  • Chen Y, Wiesmann C, Fuh G, et al. Selection and analysis of an optimized anti-VEGF antibody: crystal structure of an affinity-matured Fab in complex with antigen. J Mol Biol. 1999;293: 865–881.
  • Muller YA, Li B, Christinger HW, et al. Vascular endothelial growth factor: crystal structure and functional mapping of the kinase domain receptor binding site. Proc Natl Acad Sci U S A. 1997;94: 7192–7197.
  • Robin G, Sato Y, Desplancq D, et al. Restricted diversity of antigen binding residues of antibodies revealed by computational alanine scanning of 227 antibody-antigen complexes. J Mol Biol. 2014;426:3729–3743.
  • Brenke R, Hall DR, Chuang G-Y, et al. Application of asymmetric statistical potentials to antibody-protein docking. Bioinforma Oxf Engl. 2012;28:2608–2614. 15
  • Kringelum JV, Lundegaard C, Lund O, et al. Reliable B cell epitope predictions: impacts of method development and improved benchmarking. PLoS Comput Biol 2012;8:e1002829.
  • Peng H-P, Lee KH, Jian JW, et al. Origins of specificity and affinity in antibody-protein interactions. Proc Natl Acad Sci U S A 2014;111:E2656–E2665.
  • Clark LA, Ganesan S, Papp S, et al. Trends in antibody sequence changes during the somatic hypermutation process. J Immunol. 2006;177:333–340.
  • Farady CJ, Sellers BD, Jacobson MP, et al. Improving the species cross-reactivity of an antibody using computational design. Bioorg. Med. Chem. Lett 2009;19:3744–3747.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.