103
Views
5
CrossRef citations to date
0
Altmetric
Research Article

An explorative study on Staphylococcus aureus MurE inhibitor: induced fit docking, binding free energy calculation, and molecular dynamics

ORCID Icon, ORCID Icon & ORCID Icon
Pages 45-54 | Received 19 Aug 2018, Accepted 06 Apr 2019, Published online: 04 Jun 2019

References

  • Ventola CL. The antibiotic resistance crisis: part 1: causes and threats. P & T 2015;40:277–283.
  • Gu B, Kelesidis T, Tsiodras S, et al. The emerging problem of linezolid-resistant Staphylococcus. J Antimicrob Chemother. 2013;68:4–11.
  • Tong SYC, Davis JS, Eichenberger E, et al. Staphylococcus aureus infections: epidemiology, pathophysiology, clinical manifestations, and management. Clin Microbiol Rev. 2015;28:603–661.
  • Fowler VG Jr, Sanders LL, Sexton DJ, et al. Outcome of Staphylococcus aureus bacteremia according to compliance with recommendations of infectious diseases specialists: experience with 244 patients. Clin Infect Dis. 1998;27:478–486.
  • Pande A, Ghosh B, Pain S, et al. An unusual presentation of staphylococcal tricuspid valve infective endocarditis. N Z Med J. 2010;123:73–76.
  • Leach KL, Brickner SJ, Noe MC, et al. Linezolid, the first oxazolidinone antibacterial agent. Ann N Y Acad Sci. 2011;1222:49–54.
  • Kern WV. Daptomycin: first in a new class of antibiotics for complicated skin and soft-tissue infections. Int J Clin Pract. 2006;60:370–378.
  • Gordon E, Flouret B, Chantalat L, et al. Crystal structure of UDP-N-acetylmuramoyl-L-alanyl-D-glutamate: meso-diaminopimelate ligase from Escherichia coli. J Biol Chem. 2001;276:10999–11006.
  • El Zoeiby A, Sanschagrin F, Levesque RC. Structure and function of the Mur enzymes: development of novel inhibitors. Mol Microbiol. 2003;47:1–12.
  • Tomasic T, Sink R, Zidar N, et al. Dual inhibitor of MurD and MurE ligases from Escherichia coli and Staphylococcus aureus. Acs Med Chem Lett. 2012;3:626–630.
  • Boniface A, Bouhss A, Mengin-Lecreulx D, et al. The MurE synthetase from Thermotoga maritima is endowed with an unusual D-lysine adding activity. J Biol Chem. 2006;281:15680–15686.
  • Patin D, Boniface A, Kovac A, et al. Purification and biochemical characterization of Mur ligases from Staphylococcus aureus. Biochimie. 2010;92:1793–1800.
  • Ruane KM, Lloyd AJ, Fulop V, et al. Specificity determinants for lysine incorporation in Staphylococcus aureus peptidoglycan as revealed by the structure of a MurE enzyme ternary complex. J Biol Chem. 2013;288:33439–33448.
  • Ray SS, Bonanno JB, Rajashankar KR, et al. Cocrystal structures of diaminopimelate decarboxylase: mechanism, evolution, and inhibition of an antibiotic resistance accessory factor. Structure. 2002;10:1499–1508.
  • De Lencastre H, Wu SW, Pinho MG, et al. Antibiotic resistance as a stress response: complete sequencing of a large number of chromosomal loci in Staphylococcus aureus strain COL that impact on the expression of resistance to methicillin. Microb Drug Resist. 1999;5:163–175.
  • Walker JE, Saraste M, Runswick MJ, et al. Distantly related sequences in the α- and β-subunits of ATP synthase, myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold. EMBO J. 1982;1:945–951.
  • Bertrand JA, Auger G, Martin L, et al. Determination of the MurD mechanism through crystallographic analysis of enzyme complexes. J Mol Biol. 1999;289:579–590.
  • Liger D, Masson A, Blanot D, et al. Over‐production, purification and properties of the uridine‐diphosphate‐N‐acetylmuramate: l‐alanine ligase from Escherichia coli. Eur J Biochem. 1990;94:853–861.
  • van Assche I, Soroka M, Haemers A, et al. Synthesis and antibacterial evaluation of phosphonic acid analogues of diaminopimelic acid. Eu J Med Chem. 1991;26:505–515.
  • Auger G, van Heijenoort J, Vederas JC, et al. Effect of analogues of diaminopimelic acid on the meso-diaminopimelate-adding enzyme from Eseherichia coli. FEBS Lett. 1996;391:171–174.
  • Humljan J, Kotnik M, Boniface A, et al. A new approach towards peptidosulfonamides: synthesis of potential inhibitors of bacterial peptidoglycan biosynthesis enzymes MurD and MurE. Tetrahedron. 2006;62:10980–10988.
  • Strancar K, Boniface A, Blanot D, et al. Phosphinate inhibitors of UDP-N-acetylmuramoyl-L-alanyl-D-glutamate: L-lysine ligase (MurE). Arch Pharm (Weinheim). 2007;340:127–134.
  • Zeng BQ, Wong KK, Pompliano DL, et al. A phosphinate inhibitor of the meso-diaminopimelic acid-adding enzyme (MurE) of peptidoglycan biosynthesis. J Org Chem. 1998;63:10081–10085.
  • Sova M, Kovac A, Turk S, et al. Phosphorylated hydroxyethylamines as novel inhibitors of the bacterial cell wall biosynthesis enzymes MurC to MurF. Bioorg Chem. 2009;37:217–222.
  • Mansour TS, Caufield CE, Rasmussen B, et al. Naphthyl tetronic acids as multi-target inhibitors of bacterial peptidoglycan biosynthesis. Chem Med Chem. 2007;2:1414–1417.
  • Sink R, Barreteau H, Patin D, et al. MurD enzymes: some recent developments. Biomol Concepts. 2013;4:539–556.
  • Tomasic T, Zidar N, Kovac A, et al. 5-Benzylidenethiazolidin-4-ones as multitarget inhibitors of bacterial Mur ligases. ChemMedChem. 2010;5:286–295.
  • Guzman JD, Gupta A, Evangelopoulos D, et al. Antitubercular screening of natural products from Colombian plants: 3-methoxynordomesticine, an inhibitor of MurE ligase of Mycobacterium tuberculosis. J Antimicrob Chemother. 2010;65:2101–2107.
  • Shiu WK, Malkinson JP, Rahman MM, et al. A new plant-derived antibacterial is an inhibitor of efflux pumps in Staphylococcus aureus. Int J Antimicrob Agents. 2013;42:513–518.
  • Perdih A, Kovac A, Wolber G, et al. Discovery of novel benzene 1,3-dicarboxylic acid inhibitors of bacterial MurD and MurE ligases by structure-based virtual screening approach. Bioorg Med Chem Lett. 2009;19:2668–2673.
  • Perdih A, Hrast M, Barreteau H, et al. Benzene-1,3-dicarboxylic acid 2,5-dimethylpyrrole derivatives as multiple inhibitors of bacterial Mur ligases (MurC-MurF). Bioorg Med Chem. 2014;22:4124–4134.
  • Zaveri K, Kiranmayi P. Screening of potential lead molecule as novel MurE inhibitor: virtual screening, molecular dynamics and in vitro studies. Curr Comput Aided Drug Des. 2017;13:8–21.
  • Harder E, Damm W, Maple J, et al. OPLS3: a force field providing broad coverage of drug-like small molecules and proteins. J Chem Theory Comput. 2016;12:281–296.
  • Greenwood JR, Calkins D, Sullivan AP, et al. Towards the comprehensive, rapid, and accurate prediction of the favorable tautomeric states of drug-like molecules in aqueous solution. J Comput Aided Mol Des. 2010;24:591–604.
  • Sun H, Li Y, Tian S, et al. Assessing the performance of MM/PBSA and MM/GBSA methods. 4. Accuracies of MM/PBSA and MM/GBSA methodologies evaluated by various simulation protocols using PDB bind data set. Phys Chem Chem Phys. 2014;16:16719–16729.
  • Ramachandran GN, Ramakrishnan C, Sasisekharan V. Stereochemistry of polypeptide chain configurations. J Mol Biol. 1963;7:95–99.
  • Sherman W, Day T, Jacobson MP, et al. Novel procedure for modeling ligand/receptor induced fit effects. J Med Chem. 2006;49:534–553.
  • Jacobson MP, Pincus DL, Rapp CS, et al. A hierarchical approach to all-atom protein loop prediction. Proteins. 2004;55:351–367.
  • Friesner RA, Murphy RB, Repasky MP, et al. Extra precision glide: docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes. J Med Chem. 2006;49:6177–6196.
  • Li J, Abel R, Zhu K, et al. The VSGB 2.0 model: a next generation energy model for high resolution protein structure modeling. Proteins. 2011;79:2794–2812.
  • Guo Z, Mohanty U, Noehre J, et al. Probing the α-helical structural stability of stapled p53 peptides: molecular dynamics simulations and analysis. Chem Biol Drug Des. 2010;75:348–359.
  • Jorgensen WL, Madura JD. Temperature and size dependence for Monte Carlo simulations of TIP4P water. Mol Phys. 1985;56:1381–1392.
  • Lawrence CP, Skinner JL. Flexible TIP4P model for molecular dynamics simulation of liquid water. Chem Phys Lett. 2003;372:842–847.
  • Essmann U, Perera L, Berkowit ML, et al. A smooth particle mesh Ewald method. J Chem Phys. 1995;103:8577–8593.
  • Martyna GJ, Klein ML, Tuckerman M. Nose-Hoover chains: the canonical ensemble via continuous dynamics. J Chem Phys. 1992;97:2635–2643.
  • Martyna GJ, Tobias DJ, Klein ML. Constant-pressure molecular dynamics algorithms. J Chem Phys. 1994;101:4177–4189.
  • Zidar N, Tomasic T, Sink R, et al. Discovery of novel 5-benzylidenerhodanine and 5-benzylidenethiazolidine-2,4-dione inhibitors of MurD ligase. J Med Chem. 2010;53:6584–6594.
  • Tomasic T, Zidar N, Sink R, et al. Structure-based design of a new series of D-glutamic acid based inhibitors of bacterial UDP-N-acetylmuramoyl-L-alanine:D-glutamate ligase (MurD). J Med Chem. 2011;54:4600–4610.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.