196
Views
12
CrossRef citations to date
0
Altmetric
Research Article

Phytosterols and triterpenes from Morinda lucida Benth (Rubiaceae) as potential inhibitors of anti-apoptotic BCL-XL, BCL-2, and MCL-1: an in-silico study

ORCID Icon & ORCID Icon
Pages 87-97 | Received 25 Feb 2019, Accepted 15 May 2019, Published online: 19 Jun 2019

References

  • Anantram A, Kundaikar H, Degani M, et al. Molecular dynamic simulations on an inhibitor of anti-apoptotic Bcl-2 proteins for insights into its interaction mechanism for anti-cancer activity. J Biomol Struct Dyn. [2018 Dec 10] [13 p.]. DOI:10.1080/07391102.2018.1508371.
  • Ashkenazi A, Fairbrother WJ, Leverson JD, et al. From basic apoptosis discoveries to advanced selective BCL‑2 family inhibitors. Nat Rev Drug Discov. 2017;16:273–284.
  • Bogenberger JM, Kornblau SM, Pierceall WE, et al. BCL-2 family proteins as 5-Azacytidine-sensitizing targets and determinants of response in myeloid malignancies. Leukemia. 2014;28:1657–1665.
  • Sathishkumar N, Sathiyamoorthy S, Ramya M, et al. Molecular docking studies of anti-apoptotic BCL-2, BCL-XL, and MCL-1 proteins with ginsenosides from Panax ginseng. J Enzyme Inhib Med Chem. 2012;27:685–692.
  • Adams J, Cory S. The Bcl-2 apoptotic switch in cancer development and therapy. Oncogene. 2007;26:1324–1337.
  • Chittenden T, Flemington C, Houghton A, et al. A conserved domain in Bak, distinct from BH1 and BH2, mediates cell death and protein binding functions. EMBO J. 1995;14:5589–5596.
  • Zhai D, Jin C, Satterthwait AC, et al. Comparison of chemical inhibitors of antiapoptotic proteins. Cell Death Differ. 2006;13:1419–1421.
  • Opferman JT. Attacking cancer’s Achilles heel: antagonism of anti-apoptotic BCL-2 family members. FEBS J. 2016;283:2661–2675.
  • Chen Y, Wang J, Zhang J, et al. Binding modes of Bcl-2 homology 3 (BH3) peptides with anti-apoptotic protein A1 and redesign of peptide inhibitors: a computational study. J Biomol Struct Dyn. 2017;36:3967–3977.
  • Mandal PK, Gao F, Lu Z, et al. Potent and selective phosphopeptide mimetic prodrugs targeted to the Src homology 2 (SH2) domain of signal transducer and activator of transcription 3. J Med Chem. 2011;54:3549–3563.
  • Souers AJ, Leverson JD, Boghaert ER, et al. ABT-199, a potent and selective BCL-2 inhibitor, achieves antitumor activity while sparing platelets. Nat Med. 2013;19:202–208.
  • Wilson WH, O’Connor OA, Czuczman MS, et al. Navitoclax, a targeted high-affinity inhibitor of BCL‑2, in lymphoid malignancies: a phase 1 dose-escalation study of safety, pharmacokinetics, pharmacodynamics, and antitumour activity. Lancet Oncol. 2010;11:1149–1159.
  • Pellecchia M, Reed JC. Inhibition of anti-apoptotic Bcl-2 family proteins by natural polyphenols: new avenues for cancer chemoprevention and chemotherapy. Curr Pharm Des. 2004;10:1387–1398.
  • Verma S, Singh A, Kumari A, et al. Natural polyphenolic inhibitors against the antiapoptotic BCL-2. J Recept Signal Transduct. 2017;37:391–400.
  • Vats C, Dhanjal JK, Goyal S, et al. Computational design of novel flavonoid analogues as potential AChE inhibitors: analysis using group-based QSAR, molecular docking and molecular dynamics simulations. Struct Chem. 2015;26:467–476.
  • Sowemimo AA, Fakoya FA, Awopetu I, et al. Toxicity and mutagenic activity of some selected Nigerian plants. J Ethnopharmacol. 2007;113:427–432.
  • Ashidi JS, Houghton PJ, Hylands PJ, et al. Ethnobotanical survey and cytotoxicity testing of plants of South-western Nigeria used to treat cancer, with isolation of cytotoxic constituents from Cajanus cajan Millsp. leaves. J Ethnopharmacol. 2010;128:501–512.
  • Durodola JI. Anti-neoplastic property of a crystalline compound extracted from Morinda lucida. Planta Med. 1974;26:208–211.
  • Appiah-opong R, Tuffour I, Annor GK, et al. Antiproliferative, antioxidant activities and apoptosis induction by Morinda lucida and Taraxacum officinale in human HL-60 leukemia cells. J Glob Biosci. 2016;5:4281–4291.
  • Nweze NE. In vitro anti-trypanosomal activity of Morinda lucida leaves. African J Biotechnol. 2012;11:1812–1817.
  • Samje M, Metuge J, Mbah J, et al. In vitro anti-Onchocerca ochengi activities of extracts and chromatographic fractions of Craterispermum laurinum and Morinda lucida. BMC Complement Altern Med. 2014;14:1–12.
  • Suzuki M, Tung HN, Kwofie KD, et al. New anti-trypanosomal active tetracyclic iridoid isolated from Morinda lucida Benth. Biorg Med Chem Lett. 2015;25:3030–3033.
  • Porter J, Payne A, de Candole B, et al. Tetrahydroisoquinoline amide substituted phenyl pyrazoles as selective Bcl-2 inhibitors. Bioorg Med Chem Lett. 2009;19:230–233.
  • Lee EF, Czabotar PE, Smith BJ, et al. Crystal structure of ABT-737 complexed with Bcl-xL: implications for selectivity of antagonists of the Bcl-2 family. Cell Death Differ. 2007;14:1711–1713.
  • Dutta S, Gullá S, Chen TS, et al. Determinants of BH3 binding specificity for Mcl-1 versus Bcl-xL. J Mol Biol. 2010;398:747–762.
  • O’Boyle NM, Banck M, James CA, et al. Open babel: an open chemical toolbox. J Cheminform. 2011;3:33.
  • Sánchez-Linares I, Pérez-Sánchez H, Cecilia JM, et al. High-throughput parallel blind virtual screening using BINDSURF. BMC Bioinformatics. 2012;13:S13.
  • Trott O, Olson AJ. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem. 2010;31:455–461.
  • Nickel J, Gohlke BO, Erehman J, et al. SuperPred: update on drug classification and target prediction. Nucleic Acids Res. 2014;42:W26–W31.
  • Tripathi H, Khan F. Identification of potential inhibitors against nuclear Dam1 complex subunit Ask1 of Candida albicans using virtual screening and MD simulations. Comput Biol Chem. 2017;72:33–44.
  • Salentin S, Schreiber S, Haupt VJ, et al. PLIP: fully automated protein-ligand interaction profiler. Nucleic Acids Res. 2015;43:W443–W447.
  • Priya P, Maity A, Majumdar S, et al. Interactions between Bcl-xl and its inhibitors: insights into ligand design from molecular dynamics simulation. J Mol Graph Model. 2015;59:1.
  • Pratheeshkumar P, Kuttan G. Oleanolic acid induces apoptosis by modulating p53, BAX, Bcl-2, and caspase-3 gene expression, and regulates the activation of transcription factors and cytokine profile in B16F-10 melanoma cells. J Environ Pathol Toxicol Oncol. 2011;30:21–31.
  • Kassi E, Sourlingas TG, Spiliotaki M, et al. Cellular and molecular biology ursolic acid triggers apoptosis and Bcl-2 downregulation in MCF-7 breast cancer cells. Cancer Invest. 2009;27:723–733.
  • Niu H, Li X, Yang A, et al. Cycloartenol exerts anti-proliferative effects on Glioma U87 cells via induction of cell cycle arrest and p38 MAPK-mediated apoptosis. J BUON. 2018;23:1840–1845.
  • Moon D, Lee K, Hyun Y, et al. β-Sitosterol-induced-apoptosis is mediated by the activation of ERK and the downregulation of Akt in MCA-102 murine fibrosarcoma cells. Int Immunopharmacol. 2007;7:1044–1053.
  • Park C, Moon D, Rhu C, et al. β-sitosterol induces antiproliferation and apoptosis in human leukemic U937 cells through activation of caspase-3 and induction of Bax/Bcl-2 ratio. Biol Pharm Bull. 2007;30:1317–1323.
  • Li K, Yuan D, Yan R, et al. Stigmasterol exhibits potent antitumor effects in human gastric cancer cells mediated via inhibition of cell migration, cell cycle arrest, mitochondrial mediated apoptosis and inhibition of JAK/STAT signalling pathway. J BUON. 2018;23:1420–1425.
  • Teoh PL, Cheng FAY, Liau M, et al. Chemical composition and cytotoxic properties of Clinacanthus nutans root extracts. Pharm Biol. 2017;55:394–401.
  • Hengartner MO. The biochemistry of apoptosis. Nature. 2000;407:770–776.
  • Adrain C, Martin SJ. The mitochondrial apoptosome: a killer unleashed by the cytochrome seas. Trends Biochem Sci. 2001;26:390–397.
  • Maity A, Yadav S, Verma CS, et al. Dynamics of Bcl-xL in water and membrane: molecular simulations. PLoS One. 2013;8:e76837.
  • Borner C. The Bcl-2 protein family: sensors and checkpoints for life-or-death decisions. Mol Immunol. 2003;39:615–647.
  • Bajwa N, Liao C, Nikolovska-Coleska Z. Inhibitors of the anti-apoptotic Bcl-2 proteins: a patent review. Expert Opin Ther Pat. 2012;22:37–55.
  • Anderson MA, Deng J, Seymour JF, et al. The BCL2 selective inhibitor venetoclax induces rapid onset apoptosis of CLL cells in patients via a TP53-independent mechanism. Blood. 2016;127:3215–3224.
  • Lipinski CA. Drug-like properties and the causes of poor solubility and poor permeability. J Pharmacol Toxicol Methods. 2000;44:235–249.
  • Ishola AA, Adewole K. Phytosterols and triterpenes from Morinda lucida Benth. exhibit binding tendency against class I HDAC and HDAC7 isoforms. Mol Biol Rep. 2019;46:2307–2325.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.