125
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Discovery of promising FtsZ inhibitors by E-pharmacophore, 3D-QSAR, molecular docking study, and molecular dynamics simulation

, , &
Pages 154-166 | Received 04 Apr 2019, Accepted 24 Jun 2019, Published online: 29 Jul 2019

References

  • Spellberg B, Guidos R, Gilbert D, et al. The epidemic of antibiotic-resistant infections: a call to action for the Medical Community from the Infectious Diseases Society of America. Clin Infect Dis. 2008;46:155–164.
  • Bloom BR, Murray CJL. Tuberculosis: commentary on a reemergent killer. Science. 1992;257:1055–1064.
  • Raviglione MC. Issues facing TB control (7). Multiple drug-resistant tuberculosis. Scott Med J. 2000;45:52–55.
  • Bhalla KN. Microtubule-targeted anticancer agents and apoptosis. Oncogene. 2003;22:9075–9086.
  • Nagle A, Hur W, Gray NS. Antimitotic agents of natural origin. Curr Drug Targets. 2006;7:305–326.
  • Addinall SG, Holland B. The tubulin ancestor, FtsZ, draughtsman, designer and driving force for bacterial cytokinesis. J Mol Biol. 2002;318:219–236.
  • Löwe J, van den Ent F, Amos LA. Molecules of the bacterial cytoskeleton. Annu Rev Biophys Biomol Struct. 2004;33:177–198.
  • Michie KA, Löwe J. Dynamic filaments of the bacterial cytoskeleton. Annu Rev Biochem. 2006;75:467–492.
  • Margolin W. FtsZ and the division of prokaryotic cells and organelles. Nat Rev Mol Cell Biol. 2005;6:862–871.
  • Errington J, Daniel RA, Scheffers DJ. Cytokinesis in bacteria. Microbiol Mol Biol Rev. 2003;67:52–65.
  • White EL, Suling WJ, Ross LJ, et al. 2-Alkoxycarbonylaminopyridines: inhibitors of Mycobacterium tuberculosis FtsZ. J Antimicrob Chemother. 2002;50:111–114.
  • Wang J, Galgoci A, Kodali S, et al. Discovery of a small molecule that inhibits cell division by blocking FtsZ, a novel therapeutic target of antibiotics. J Biol Chem. 2003;278:44424–44428.
  • Stricker J, Maddox P, Salmon ED, et al. Rapid assembly dynamics of the Escherichia coli FtsZ-ring demonstrated by fluorescence recovery after photobleaching. Proc Natl Acad Sci. 2002;99:3171–3175.
  • Ben-Yehuda S, Losick R. Asymmetric cell division in B. subtilis involves a spiral-like intermediate of the cytokinetic protein FtsZ. Cell. 2002;109:257–266.
  • Goehring NW, Beckwith J. Diverse paths to midcell: assembly of the bacterial cell division machinery. Curr Biol. 2005;15:R514–R526.
  • Leung AK, Lucile White E, Ross LJ, et al. Structure of Mycobacterium tuberculosis FtsZ reveals unexpected, G protein-like conformational switches. J Mol Biol. 2004;342:953–970.
  • Møller-Jensen J, Löwe J. Increasing complexity of the bacterial cytoskeleton. Curr Opin Cell Biol. 2005;17:75–81.
  • Thanedar S, Margolin W. FtsZ exhibits rapid movement and oscillation waves in helix-like patterns in Escherichia coli. Curr Biol. 2004;14:1167–1173.
  • Respicio L, Nair PA, Huang Q, et al. Characterizing septum inhibition in Mycobacterium tuberculosis for novel drug discovery cytokinesis in bacteria. Tuberculosis. 2008;88:420–429.
  • Slayden RA, Knudson DL, Belisle JT. Identification of cell cycle regulators in Mycobacterium tuberculosis by inhibition of septum formation and global transcriptional analysis cytokinesis in bacteria. Microbiology. 2006;152:1789–1797.
  • Sutherland AG, Alvarez J, Ding W, et al. Structure-based design of carboxybiphenylindole inhibitors of the ZipA–FtsZ interaction. Org Biomol Chem. 2003;1:4138–4140.
  • Duggirala S, Nankar RP, Rajendran S, et al. Phytochemicals as inhibitors of bacterial cell division protein FtsZ: coumarins are promising candidates. Appl Biochem Biotechnol. 2014;174:283–296.
  • Jennings LD, Foreman KW, Rush TS, et al. Combinatorial synthesis of substituted 3-(2-indolyl) piperidines and 2-phenyl indoles as inhibitors of ZipA–FtsZ interaction. Bioorg Med Chem. 2004;12:5115–5131.
  • Sun N, Chan FY, Lu YJ, et al. Rational design of berberine-based FtsZ inhibitors with broad-spectrum antibacterial activity. PLoS One. 2014;9:e97514.
  • Paradis-Bleau C, Beaumont M, Sanschagrin F, et al. Parallel solid synthesis of inhibitors of the essential cell division FtsZ enzyme as a new potential class of antibacterials. Bioorg Med Chem. 2007;15:1330–1340.
  • Fujimori M, Kadoya R, Ota S, et al. In: International Conference On Advanced Informatics: Concepts, Theory And Application, (ICAICTA); 16–19 August 2016; George Town, Malaysia.
  • Nepomuceno GM, Chan KM, Huynh V, et al. Synthesis and evaluation of quinazolines as inhibitors of the bacterial cell division protein FtsZ. ACS Med Chem Lett. 2015;6:308–312.
  • Sun J, Ming-Hui L, Xin-Yi W, et al. Vanillin derivatives as the selective small molecule inhibitors of FtsZ. Med Chem Res. 2014;23:2985–2994.
  • Chan FY, Sun N, Neves MA, et al. Identification of a new class of FtsZ inhibitors by structure-based design and in vitro screening. J Chem Inf Model. 2013;53:2131–2140.
  • LigPrep, version 3.4; New York: Schrödinger, LLC; 2015.
  • Phase, version 4.3; New York: Schrödinger, LLC; 2015.
  • Salam NK, Nuti R, Sherman W. Novel method for generating structure-based pharmacophores using energetic analysis. J Chem Inf Model. 2009;49:2356–2368.
  • Clement OO, Freeman CM, Hartmann RW, et al. Three dimensional pharmacophore modeling of human CYP17 inhibitors. Potential agents for prostate cancer therapy. J Med Chem. 2003;46:2345–2351.
  • Güner OF. Pharmacophore perception, development, and use in drug design. La Jolla, CA: International University Line; 2000; p. 191–211.
  • Suaifan GARY, Al-Ejal HAN, Taha MO. Pharmacophore and QSAR modeling of endothelial nitric oxide synthase inhibitors and subsequent validation and in silico search for new hits. J Pharm Sci. 2012;5:220–242.
  • QikProp, version 4.4. New York: Schrödinger, LLC; 2015.
  • Prime, version 4.0. New York: Schrödinger, LLC; 2015.
  • Hess B, Kutzner C, van der Spoel D, et al. GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J Chem Theory Comput. 2008;4:435–447.
  • Van Der Spoel D, Lindahl E, Hess B, et al. GROMACS: fast, flexible, and free. J Comput Chem. 2005;26:1701–1718.
  • Shao-Yong L, Yong-Jun J, Jing L, et al. Molecular docking and molecular dynamics simulation studies of GPR40 receptor–agonist interactions. J Mol Graph Model. 2010;28:766–774.
  • Suganya PR, Kalva S, Saleena LM. Identification of potent virtual leads specific to S1' loop of ADAMTS4: pharmacophore modeling, 3D-QSAR, molecular docking and dynamic studies. Comb Chem High Throughput Screen. 2016;19:153–160.
  • Wei Y, Li J, Qing J, et al. Discovery of novel hepatitis C virus NS5B polymerase inhibitors by combining random forest, multiple e-pharmacophore modeling and docking. PLoS One. 2016;11:e0148181.
  • Genheden S, Ryde U. The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. Expert Opin Drug Discov. 2015;10:449–461.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.