321
Views
14
CrossRef citations to date
0
Altmetric
Research Articles

Cardiotonic steroids as potential Na+/K+-ATPase inhibitors – a computational study

, , , , &
Pages 226-234 | Received 02 Feb 2019, Accepted 24 Aug 2019, Published online: 11 Sep 2019

References

  • Lutsenko S, Kaplan JH. Organization of P-type ATPases: significance of structural diversity. Biochemistry. 1995;34:15607–15613.
  • Blanco G, Mercer RW. Isozymes of the Na-K-ATPase: heterogeneity in structure, diversity in function. Am J Physiol-Renal Physiol. 1998;275:F633–F650.
  • Skou JC. The influence of some cations on an adenosine triphosphatase from peripheral nerves. Biochimica et biophysica acta. 1957;23:394–401.
  • Therien AG, Blostein R. Mechanisms of sodium pump regulation. Am J Physiol Cell Physiol. 2000;279:C541–C566.
  • Lopina O. Na+,K+-ATPase: structure, mechanism, and regulation. Membr Cell Biol. 2000;13:721–744.
  • Sachs G, Munson K. Mammalian phosphorylating ion-motive ATPases. Current Opin Cell Biol. 1991;3:685–694.
  • Schwinger RH, Bundgaard H, Müller-Ehmsen J, et al. The Na, K-ATPase in the failing human heart. Cardiovascular Res. 2003;57:913–920.
  • Baumgarten G. [The cardioactive glycosides: origin, chemistry and basics of their pharmacological and clinical action; with e. Contribution: Structural Relationships in Cardenolides and Bufadienolides] by Werner Förster; with 37, of which color. Fig. Thieme; 1,963th
  • Schatzmann H. Herzglykoside als Hemmstoffe für den aktiven Kalium-und Natriumtransport durch die Erythrocytenmembran. Helv Physiol Pharmacol Acta. 1953;11:346–354.
  • Xie Z, Askari A. Na(+)/K(+)-ATPase as a signal transducer. Eur J Biochem. 2002;269:2434–2439.
  • Gheorghiade M, Adams KF, Colucci WS. Digoxin in the management of cardiovascular disorders. Circulation. 2004;109:2959–2964.
  • Al-Snafi AE. Phytochemical constituents and medicinal properties of Digitalis lanata and Digitalis purpurea-A review. Indo Am J Pharm Sci. 2017;4:225–234.
  • Stenkvist B. Cardenolides and cancer. Anticancer Drugs. 2001;12:635–636.
  • Weidemann H. Na/K-ATPase, endogenous digitalis like compounds and cancer development—a hypothesis. Front Biosci. 2005;10:2165–2176.
  • Flasch H, Heinz N. Correlation between inhibition of (Na+, K+)-membrane-ATPase and positive inotropic activity of cardenolides in isolated papillary muscles of guinea pig. Naunyn-Schmiedeberg's Arch Pharmacol. 1978;304:37–44.
  • Espineda C, Seligson DB, James Ball W, et al. Analysis of the Na, K‐ATPase α‐and β‐subunit expression profiles of bladder cancer using tissue microarrays. Cancer. 2003;97:1859–1868.
  • Langer G. The role of sodium ion in the regulation of myocardial contractility. J Mol Cell Cardiol. 1970;1:203–207.
  • Dostanic I, Schultz JEJ, Lorenz JN, et al. The α1 isoform of Na, K-ATPase regulates cardiac contractility and functionally interacts and co-localizes with the Na/Ca exchanger in heart. J Biol Chem. 2004;279:54053–54061.
  • Lingrel JB, Argüello JM, Huysse J, et al. Cation and cardiac glycoside binding sites of the Na, K‐ATPase. Ann NY Acad Sci. 1997;834:194–206.
  • Wasserstrom JA, Aistrup GL. Digitalis: new actions for an old drug. Am J Physiol Heart Circ Physiol. 2005;289:H1781–H1793.
  • Askari A, Kakar S, Huang W. Ligand binding sites of the ouabain-complexed (Na++ K+)-ATPase. J Biol Chem. 1988;263:235–242.
  • Ogawa H, Shinoda T, Cornelius F, et al. Crystal structure of the sodium-potassium pump (Na+, K+-ATPase) with bound potassium and ouabain. Proc Nat Acad Sci. 2009;106:13742–13747.
  • Croyle ML, Woo AL, Lingrel JB. Extensive random mutagenesis analysis of the Na+/K+‐ATPase α subunit identifies known and previously unidentified amino acid residues that alter ouabain sensitivity implications for ouabain binding. Eur J Biochem. 1997;248:488–495.
  • Toyoshima C, Nomura H. Structural changes in the calcium pump accompanying the dissociation of calcium. Nature. 2002;418:605.
  • Qiu LY, Krieger E, Schaftenaar G, et al. Reconstruction of the complete ouabain-binding pocket of Na, K-ATPase in gastric H, K-ATPase by substitution of only seven amino acids. J Biol Chem. 2005;280:32349–32355.
  • Wolber G, Langer T. LigandScout: 3-D pharmacophores derived from protein-bound ligands and their use as virtual screening filters. J Chem Inf Model. 2005;45:160–169.
  • e Zahra SN, Khattak NA, Mir A. Comparative modeling and docking studies of p16ink4/Cyclin D1/Rb pathway genes in lung cancer revealed functionally interactive residue of RB1 and its functional partner E2F1. Theor Biol Med Model. 2013;10:1.
  • Desai VH, Kumar SP, Pandya HA, et al. Receptor-guided de novo design of dengue envelope protein inhibitors. Appl Biochem Biotechnol. 2015;177:861–878.
  • Kalyaanamoorthy S, Chen Y-PP. Structure-based drug design to augment hit discovery. Drug Discov Today. 2011;16:831–839.
  • Yatime L, Laursen M, Morth JP, et al. Structural insights into the high affinity binding of cardiotonic steroids to the Na+, K+-ATPase. J Structural Biol. 2011;174:296–306.
  • Kumar S, George L, Jasrai Y, et al. Prioritization of active antimalarials using structural interaction profile of Plasmodium falciparum enoyl-acyl carrier protein reductase (PfENR)-triclosan derivatives. SAR QSAR Environ Res. 2015;26:61–77.
  • Krieger E, Darden T, Nabuurs SB, et al. Making optimal use of empirical energy functions: force‐field parameterization in crystal space. Proteins. 2004;57:678–683.
  • Middleton DA, Rankin S, Esmann M, et al. Structural insights into the binding of cardiac glycosides to the digitalis receptor revealed by solid-state NMR. Proc Nat Acad Sci. 2000;97:13602–13607.
  • Patel CN, Georrge JJ, Modi KM, et al. Pharmacophore-based virtual screening of catechol-o-methyltransferase (COMT) inhibitors to combat Alzheimer’s disease. J Biomol Struct Dyn. 2018;36:3938–3957.
  • VLife M. 2018. Molecular design suite 4.6 (2018). Pune: Vlife Sciences Technologies.
  • Kumar SP. Receptor pharmacophore ensemble (REPHARMBLE): a probabilistic pharmacophore modeling approach using multiple protein-ligand complexes. J Mol Model. 2018;24:282.
  • Bowers KJ, Chow E, Xu H, et al. Scalable Algorithms for Molecular Dynamics Simulations on Commodity Clusters Proceedings of the 2006 ACM/IEEE Conference on Supercomputing; 2006 Nov 11–17; Tampa, Florida. New York, NY, USA: ACM; 2006.
  • Schrödinger Release. 2014. 1: Desmond Molecular Dynamics System, version 3.7, DE Shaw ResearchMaestro-Desmond Interoperability Tools, version, 3, New York, NY.
  • Shivakumar D, Williams J, Wu Y, et al. Prediction of absolute solvation free energies using molecular dynamics free energy perturbation and the OPLS force field. J Chem Theory Comput. 2010;6:1509–1519.
  • Jorgensen WL, Chandrasekhar J, Madura JD, et al. Comparison of simple potential functions for simulating liquid water. J Chem Phy. 1983;79:926–935.
  • Reddy S, Reddy KT, Kumari VV, et al. Molecular docking and dynamic simulation studies evidenced plausible immunotherapeutic anticancer property by Withaferin A targeting indoleamine 2, 3-dioxygenase. J Biomol Struct Dynamics. 2015;33:2695–2709.
  • Jorgensen WL, Maxwell DS, Tirado-Rives J. Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J Am Chem Soc. 1996;118:11225–11236.
  • Kaminski GA, Friesner RA, Tirado-Rives J, et al. Evaluation and reparametrization of the OPLS-AA force field for proteins via comparison with accurate quantum chemical calculations on peptides. J Phys Chem B. 2001;105:6474–6487.
  • Shinoda W, Mikami M. Rigid‐body dynamics in the isothermal‐isobaric ensemble: a test on the accuracy and computational efficiency. J Comput Chem. 2003;24:920–930.
  • Darjee SM, Modi KM, Panchal U, et al. Highly selective and sensitive fluorescent sensor: Thiacalix [4] arene-1-naphthalene carboxylate for Zn 2+ ions. J Mol Struct. 2017;1133:1–8.
  • Panchal U, Modi K, Dey S, et al. A resorcinarene-based “turn-off” fluorescence sensor for 4-nitrotoluene: Insights from fluorescence and 1H NMR titration with computational approach. J Luminescence. 2017;184:74–82.
  • Rocha SC, Pessoa MT, Neves LD, et al. 21-Benzylidene digoxin: a proapoptotic cardenolide of cancer cells that up-regulates Na, K-ATPase and epithelial tight junctions. PLoS One. 2014;9:e108776.
  • Katz A, Lifshitz Y, Bab-Dinitz E, et al. Selectivity of digitalis glycosides for isoforms of human Na, K-ATPase. J Biol Chem. 2010;285:19582–19592.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.