72
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Rational discovery of novel type-III FTF antagonists to competitively suppress TIF-2 coactivation in liver cancer

, , , , &
Pages 304-311 | Received 19 Jul 2019, Accepted 05 Nov 2019, Published online: 22 Nov 2019

References

  • Benod C, Vinogradova MV, Jouravel N, et al. Nuclear receptor liver receptor homologue 1 (LRH-1) regulates pancreatic cancer cell growth and proliferation. Proc Natl Acad Sci USA. 2011;108(41):16927–16931.
  • Nadolny C, Dong X. Liver receptor homolog-1 (LRH-1): a potential therapeutic target for cancer. Cancer Biol Ther. 2015;16(7):997–1004.
  • Galarneau L, Paré JF, Allard D, et al. The alpha1-fetoprotein locus is activated by a nuclear receptor of the Drosophila FTZ-F1 family. Mol Cell Biol. 1996;16(7):3853–3865.
  • Xiao L, Wang Y, Liang W, et al. LRH-1 drives hepatocellular carcinoma partially through induction of c-Myc and cyclin E1, and suppression of p21. Cancer Manag Res. 2018;10:2389–2400.
  • Benod C, Carlsson J, Uthayaruban R, et al. Structure-based discovery of antagonists of nuclear receptor LRH-1. J Biol Chem. 2013;288(27):19830–19844.
  • Mamrosh JL, Lee JM, Wagner M, et al. Nuclear receptor LRH-1/NR5A2 is required and targetable for liver endoplasmic reticulum stress resolution. Elife. 2014;3:e01694.
  • Rastinejad F, Huang P, Chandra V, et al. Understanding nuclear receptor form and function using structural biology. J Mol Endocrinol. 2013;51(3):T1–T21.
  • Sablin EP, Blind RD, Uthayaruban R, et al. Structure of liver receptor homolog-1 (NR5A2) with PIP3 hormone bound in the ligand binding pocket. J Struct Biol. 2015;192(3):342–348.
  • Krylova IN, Sablin EP, Moore J, et al. Structural analyses reveal phosphatidyl inositols as ligands for the NR5 orphan receptors SF-1 and LRH-1. Cell. 2005;120(3):343–355.
  • Whitby RJ, Stec J, Blind RD, et al. Small molecule agonists of the orphan nuclear receptors steroidogenic factor-1 (SF-1, NR5A1) and liver receptor homologue-1 (LRH-1, NR5A2). J Med Chem. 2011;54(7):2266–2281.
  • Cobo-Vuilleumier N, Lorenzo PI, Rodríguez NG, et al. LRH-1 agonism favours an immune-islet dialogue which protects against diabetes mellitus. Nat Commun. 2018;9(1):1488.
  • Busby S, Nuhant P, Cameron M, et al. Discovery of inverse agonists for the liver receptor homologue-1 (LRH1; NR5A2). Probe Reports from the NIH Molecular Libraries Program. 2010. Available from: https://www.ncbi.nlm.nih.gov/pubmed/?term=23166964
  • Shen Y, Chi H, Zhou J, et al. Structure-based stepwise screening of PPARγ antagonists as potential competitors with NCOA1 coactivator peptide for PPARγ CIS site. Int J Pept Res Ther. 2019;25(4):1369–1377.
  • Ren Y, Chen X, Feng M, et al. Gaussian process: a promising approach for the modeling and prediction of peptide binding affinity to MHC proteins. Protein Pept Lett. 2011;18(7):670–678.
  • Zhou P, Wang C, Tian F, et al. Biomacromolecular quantitative structure-activity relationship (BioQSAR): a proof-of-concept study on the modeling, prediction and interpretation of protein-protein binding affinity. J Comput Aided Mol Des. 2013;27(1):67–78.
  • Tian F, Tan R, Guo T, et al. Fast and reliable prediction of domain-peptide binding affinity using coarse-grained structure models. Biosystems. 2013;113(1):40–49.
  • Zhou P, Yang C, Ren Y, et al. What are the ideal properties for functional food peptides with antihypertensive effect? A computational peptidology approach. Food Chem. 2013;141(3):2967–2973.
  • Li Z, Miao Q, Yan F, et al. Machine learning in quantitative protein-peptide affinity prediction: implications for therapeutic peptide design. Curr Drug Metab. 2019;20(3):170–176.
  • Irwin JJ, Shoichet BK. ZINC – a free database of commercially available compounds for virtual screening. J Chem Inf Model. 2005;45(1):177–182.
  • Yang C, Wang C, Zhang S, et al. Structural and energetic insights into the intermolecular interaction among human leukocyte antigens, clinical hypersensitive drugs and antigenic peptides. Mol Simul. 2015;41(9):741–751.
  • Pérez-Regidor L, Zarioh M, Ortega L, et al. Virtual screening approaches towards the discovery of toll-like receptor modulators. Int J Mol Sci. 2016;17(9):1508.
  • Mugumbate G, Newton AS, Rosenthal PJ, et al. Novel anti-plasmodial hits identified by virtual screening of the ZINC database. J Comput Aided Mol Des. 2013;27(10):859–871.
  • Lipinski CA, Lombardo F, Dominy BW, et al. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev. 2001;46(1-3):3–26.
  • Lin J, Sahakian D, de Morais S, et al. The role of absorption, distribution, metabolism, excretion and toxicity in drug discovery. Curr Top Med Chem. 2003;3(10):1125–1154.
  • Martin YC, Kofron JL, Traphagen LM. Do structurally similar molecules have similar biological activity? J Med Chem. 2002;45(19):4350–4358.
  • Luo H, Du T, Zhou P, et al. Molecular docking to identify associations between drugs and class I human leukocyte antigens for predicting idiosyncratic drug reactions. Comb Chem High Throughput Screen. 2015;18(3):296–304.
  • Irwin JJ, Shoichet BK, Mysinger MM, et al. Automated docking screens: a feasibility study. J Med Chem. 2009;52(18):5712–5720.
  • Carlsson J, Coleman RG, Setola V, et al. Ligand discovery from a dopamine D3 receptor homology model and crystal structure. Nat Chem Biol. 2011;7(11):769–778.
  • Mysinger MM, Shoichet BK. Rapid context-dependent ligand desolvation in molecular docking. J Chem Inf Model. 2010;50(9):1561–1573.
  • Tian F, Lv Y, Zhou P, et al. Characterization of PDZ domain-peptide interactions using an integrated protocol of QM/MM, PB/SA, and CFEA analyses. J Comput Aided Mol Des. 2011;25(10):947–958.
  • Bai Z, Hou S, Zhang S, et al. Targeting self-binding peptides as a novel strategy to regulate protein activity and function: a case study on the proto-oncogene tyrosine protein kinase c-Src. J Chem Inf Model. 2017;57(4):835–845.
  • Zhou P, Hou S, Bai Z, et al. Disrupting the intramolecular interaction between proto-oncogene c-Src SH3 domain and its self-binding peptide PPII with rationally designed peptide ligands. Artif Cells Nanomed Biotechnol. 2018;46(6):1122–1131.
  • Musille PM, Kossmann BR, Kohn JA, et al. Unexpected allosteric network contributes to LRH-1 co-regulator selectivity. J Biol Chem. 2016;291(3):1411–1426.
  • Yang C, Zhang S, He P, et al. Self-binding peptides: folding or binding. J Chem Inf Model. 2015;55(2):329–342.
  • Yang C, Zhang S, Bai Z, et al. A two-step binding mechanism for the self-binding peptide recognition of target domains. Mol BioSyst. 2016;12(4):1201–1213.
  • Li Z, Yan F, Miao Q, et al. Self-binding peptides: binding-upon-folding versus folding-upon-binding. J Theor Biol. 2019;469:25–34.
  • Zhou P, Miao Q, Yan F, et al. Is protein context responsible for peptide-mediated interactions?. Mol Omics. 2019;15(4):280–295.
  • Yu H, Zhou P, Deng M, et al. Indirect readout in protein-peptide recognition: a different story from classical biomolecular recognition. J Chem Inf Model. 2014;54(7):2022–2032.
  • Zhou P, Tian F, Shang Z. 2D depiction of nonbonding interactions for protein complexes. J Comput Chem. 2009;30(6):940–951.
  • Plevin MJ, Mills MM, Ikura M. The LxxLL motif: a multifunctional binding sequence in transcriptional regulation. Trends Biochem Sci. 2005;30(2):66–69.
  • Wang K, Zhu M, Tang Y, et al. Integration of virtual screening and susceptibility test to discover active-site subpocket-specific biogenic inhibitors of Helicobacter pylori shikimate dehydrogenase. Int Microbiol. 2019;22(1):69–80.
  • Tian F, Yang C, Wang C, et al. Mutatomics analysis of the systematic thermostability profile of Bacillus subtilis lipase A. J Mol Model. 2014;20(6):2257.
  • Zhou P, Zhang S, Wang Y, et al. Structural modeling of HLA-B*1502 peptide carbamazepine T-cell receptor complex architecture: implication for the molecular mechanism of carbamazepine-induced Stevens-Johnson syndrome toxic epidermal necrolysis. J Biomol Struct Dyn. 2016;34(8):1806–1817.
  • Salentin S, Schreiber S, Haupt VJ, et al. PLIP: fully automated protein-ligand interaction profiler. Nucleic Acids Res. 2015;43(W1):W443–W447.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.