146
Views
11
CrossRef citations to date
0
Altmetric
Research Articles

Study of the mechanism of action, molecular docking, and dynamics of anticancer terpenoids from Salvia lachnocalyx

, ORCID Icon, ORCID Icon & ORCID Icon
Pages 24-33 | Received 23 Aug 2019, Accepted 29 Dec 2019, Published online: 08 Jan 2020

References

  • Newman DJ, Cragg GM. Natural products as sources of new drugs from 1981 to 2014. J Nat Prod. 2016;79(3):629–661.
  • Wu Y-B, Ni Z-Y, Shi Q-W, et al. Constituents from Salvia species and their biological activities. Chem Rev. 2012;112(11):5967–6026.
  • Thoppil RJ, Bishayee A. Terpenoids as potential chemopreventive and therapeutic agents in liver cancer. WJH. 2011;3(9):228–249.
  • Huang M, Lu J-J, Huang M-Q, et al. Terpenoids: natural products for cancer therapy. Expert Opin Investig Drugs. 2012;21(12):1801–1818.
  • Slameňová D, Mašterová I, Lábaj J, et al. Cytotoxic and DNA‐damaging effects of diterpenoid quinones from the roots of Salvia officinalis L. on colonic and hepatic human cells cultured in vitro. Basic Clin Pharmacol Toxicol. 2004;94:282–290.
  • Huang J, Wu L, Tashiro S-i, et al. Reactive oxygen species mediate oridonin-induced HepG2 apoptosis through p53, MAPK, and mitochondrial signaling pathways. J Pharmacol Sci. 2008;107(4):370–379.
  • Won S-H, Lee H-J, Jeong S-J, et al. Tanshinone IIA induces mitochondria dependent apoptosis in prostate cancer cells in association with an inhibition of phosphoinositide 3-kinase/AKT pathway. Biol Pharm Bull. 2010;33(11):1828–1834.
  • Fronza M, Lamy E, Günther S, et al. Abietane diterpenes induce cytotoxic effects in human pancreatic cancer cell line MIA PaCa-2 through different modes of action. Phytochemistry. 2012;78:107–119.
  • Cai Y, Lu J, Miao Z, et al. Reactive oxygen species contribute to cell killing and P-glycoprotein downregulation by salvicine in multidrug resistant K562/A02 cells. Cancer Biol Ther. 2007;6:1794–1799.
  • Su CC, Chen GW, Lin JG. Growth inhibition and apoptosis induction by tanshinone I in human colon cancer Colo 205 cells. Int J Mol Med. 2008;22:613–618.
  • Jassbi AR, Zare S, Firuzi O, et al. Bioactive phytochemicals from shoots and roots of Salvia species. Phytochem Rev. 2015;1:829–867.
  • Mirzaei HH, Firuzi O, Chandran JN, et al. Two antiproliferative seco-4, 5-abietane diterpenoids from roots of Salvia ceratophylla L. Phytochem Lett. 2019;29:129–133.
  • Mirzaei HH, Firuzi O, Schneider B, et al. Cytotoxic diterpenoids from the roots of Salvia lachnocalyx. Revista Brasileira de Farmacognosia. 2017;27:475–479.
  • Zheng H, Chen Q, Zhang M, et al. Cytotoxic ent-Kaurane Diterpenoids from Salvia cavaleriei. J Nat Prod. 2013;76(12):2253–2262.
  • Xu G, Yang J, Wang Y-Y, et al. Diterpenoid constituents of the roots of Salvia digitaloides. J Agric Food Chem. 2010;58(23):12157–12161.
  • Mirzaei HH, Firuzi O, Baldwin IT, et al. Cytotoxic activities of different Iranian solanaceae and lamiaceae plants and bioassay-guided study of an active extract from Salvia lachnocalyx. Nat Prod Commun. 2017;12(10):1934578X1701201.
  • Fronza M, Murillo R, Ślusarczyk S, et al. In vitro cytotoxic activity of abietane diterpenes from Peltodon longipes as well as Salvia miltiorrhiza and Salvia sahendica. Bioorganic Med Chem. 2011;19:4876–4881.
  • Akihisa T, Koike K, Kimura Y, et al. Acyclic and incompletely cyclized triterpene alcohols in the seed oils of theaceae and gramineae. Lipids. 1999;34(11):1151–1157.
  • Menezes J, Edraki N, Kamat SP, et al. Long chain alkyl esters of hydroxycinnamic acids as promising anticancer agents: selective induction of apoptosis in cancer cells. J Agric Food Chem. 2017;65(33):7228–7239.
  • Tavakkoli M, Miri R, Jassbi AR, et al. Carthamus, Salvia and Stachys species protect neuronal cells against oxidative stress-induced apoptosis. Pharm Biol. 2014;52(12):1550–1557.
  • Koes DR, Baumgartner MP, Camacho CJ. Lessons learned in empirical scoring with smina from the CSAR 2011 benchmarking exercise. J Chem Inf Model. 2013;53(8):1893–1904.
  • Kastan MB, Bartek J. Cell-cycle checkpoints and cancer. Nature. 2004;432(7015):316–323.
  • Zhuang S, Demirs JT, Kochevar IE. p38 mitogen-activated protein kinase mediates bid cleavage, mitochondrial dysfunction, and caspase-3 activation during apoptosis induced by singlet oxygen but not by hydrogen peroxide. J Biol Chem. 2000;275(34):25939–25948.
  • Ewald JA, Desotelle JA, Wilding G, et al. Therapy-induced senescence in cancer. JNCI. 2010;102(20):1536–1546.
  • Yang H, Ping Dou Q. Targeting apoptosis pathway with natural terpenoids: implications for treatment of breast and prostate cancer. CDT. 2010;11(6):733–744.
  • Liu Y, Whelan RJ, Pattnaik BR, et al. Terpenoids from Zingiber officinale (Ginger) induce apoptosis in endometrial cancer cells through the activation of p53. PLoS One. 2012;7(12):e53178.
  • Haghighitalab A, Matin MM, Bahrami AR, et al. In vitro investigation of anticancer, cell-cycle-inhibitory, and apoptosis-inducing effects of diversin, a natural prenylated coumarin, on bladder carcinoma cells. Zeitschrift Für Naturforschung C. 2014;69(3-4):99–109.
  • Burmistrova O, Simões MF, Rijo P, et al. Antiproliferative activity of abietane diterpenoids against human tumor cells. J Nat Prod. 2013;76(8):1413–1423.
  • Kafil V, Eskandani M, Omidi Y, et al. Abietane diterpenoid of Salvia sahendica Boiss and Buhse potently inhibits MCF-7 breast carcinoma cells by suppression of the PI3K/AKT pathway. RSC Adv. 2015;5(23):18041–18050.
  • Wang L, He HS, Yu HL, et al. Sclareol, a plant diterpene, exhibits potent antiproliferative effects via the induction of apoptosis and mitochondrial membrane potential loss in osteosarcoma cancer cells. Mol Med Rep. 2015;11(6):4273–4278.
  • Capranico G, Zunino F. DNA topoisomerase-trapping antitumour drugs. Eur J Cancer. 1992;28(12):2055–2060.
  • Salerno S, Da Settimo F, Taliani S, et al. Recent advances in the development of dual topoisomerase I and II inhibitors as anticancer drugs. CMC. 2010;17(35):4270–4290.
  • Pommier Y. Topoisomerase I inhibitors: camptothecins and beyond. Nat Rev Cancer. 2006;6(10):789–802.
  • Mathijssen RH, Loos WJ, Verweij J, et al. Pharmacology of topoisomerase I inhibitors irinotecan (CPT-11) and topotecan. CCDT. 2002;2(2):103–123.
  • Singh S, Awasthi M, Pandey VP, et al. Plant derived anti-cancerous secondary metabolites as multipronged inhibitor of COX, Topo and aromatase: molecular modeling and dynamics simulation analyses. J Biomol Struct Dyn. 2017;35:3082–3097.
  • Wang HK, Morris‐Natschke SL, Lee KH. Recent advances in the discovery and development of topoisomerase inhibitors as antitumor agents. Med Res Rev. 1997;17(4):367–425.
  • Song Y, Cushman M. The binding orientation of a norindenoisoquinoline in the topoisomerase I − DNA cleavage complex is primarily governed by π− π stacking interactions. J Phys Chem B. 2008;112(31):9484–9489.
  • Drwal MN, Agama K, Wakelin LP, et al. Exploring DNA topoisomerase I ligand space in search of novel anticancer agents. PLoS One. 2011;6(9):e25150.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.