59
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Identification, characterization, and comparison of n-alkanols and anesthetics binding to the C1b subdomain of protein kinase cα: similar function with different binding sites

, , &
Pages 109-116 | Received 14 Nov 2019, Accepted 04 Feb 2020, Published online: 13 Feb 2020

References

  • Newton AC. Protein kinase C: perfectly balanced. Crit Rev Biochem Mol Biol. 2018;53(2):208–230.
  • Nishizuka Y. Protein kinase C and lipid signaling for sustained cellular responses. Faseb J. 1995;9(7):484–496.
  • Das J, Rahman GM. C1 domains: structure and ligand-binding properties. Chem Rev. 2014;114(24):12108–12131.
  • Slater SJ, Kelly MB, Taddeo FJ, et al. Evidence for discrete diacylglycerol and phorbol ester activator sites on protein kinase C. Differences in effects of 1-alkanol inhibition, activation by phosphatidylethanolamine and calcium chelation. J Biol Chem. 1994;269(25):17160–17165.
  • Medkova M, Cho W. Interplay of C1 and C2 domains of protein kinase Cα in its membrane binding and activation. J Biol Chem. 1999;274(28):19852–19861.
  • Johnson JE, Giorgione J, Newton AC. The C1 and C2 domains of protein kinase C are independent membrane targeting modules, with specificity for phosphatidylserine conferred by the C1 domain. Biochemistry. 2000;39(37):11360–11369.
  • Das J, Pany S, Majhi A. Chemical modifications of resveratrol for improved protein kinase Cα activity. Bioorg Med Chem. 2011;19(18):5321–5333.
  • Majhi A, Rahman GM, Panchal S, et al. Binding of curcumin and its long chain derivatives to the activator binding domain of novel protein kinase C. Bioorg Med Chem. 2010;18(4):1591–1598.
  • Das J, Pany S, Rahman GM, et al. PKCε has an alcohol-binding site in its second cysteine-rich regulatory domain. Biochem J. 2009;421(3):405–413.
  • Das J, Addona GH, Sandberg WS, et al. Identification of a general anesthetic binding site in the diacylglycerol-binding domain of protein kinase Cδ. J Biol Chem. 2004;279(36):37964–37972.
  • Slater SJ, Kelly MB, Larkin JD, et al. Interaction of alcohols and anesthetics with protein kinase Cα. J Biol Chem. 1997;272(10):6167–6173.
  • Slater SJ, Malinowski SA, Stubbs CD. The nature of the hydrophobic n-alkanol binding site within the C1 domains of protein kinase Cα. Biochemistry. 2004;43(23):7601–7609.
  • Shi L. Structural identification and systematic comparison of phorbol ester, dioleoylglycerol, alcohol and sevoflurane binding sites in PKCδ C1A domain. Protein J. 2018;37(6):539–547.
  • Ananthanarayanan B, Stahelin RV, Digman MA, et al. Activation mechanisms of conventional protein kinase C isoforms are determined by the ligand affinity and conformational flexibility of their C1 domains. J Biol Chem. 2003;27:46886–46894.
  • Thelen M, Rosen A, Nairn AC, et al. Regulation by phosphorylation of reversible association of a myristoylated protein kinase C substrate with the plasma membrane. Nature. 1991;351(6324):320–322.
  • Tian F, Tan R, Guo T, et al. Fast and reliable prediction of domain-peptide binding affinity using coarse-grained structure models. Biosystems. 2013;113(1):40–49.
  • Zhou P, Yang C, Ren Y, et al. What are the ideal properties for functional food peptides with antihypertensive effect? A computational peptidology approach. Food Chem. 2013;141(3):2967–2973.
  • Zhou P, Wang C, Tian F, et al. Biomacromolecular quantitative structure-activity relationship (BioQSAR): a proof-of-concept study on the modeling, prediction and interpretation of protein-protein binding affinity. J Comput Aided Mol Des. 2013;27(1):67–78.
  • Saraiva L, Fresco P, Pinto E, et al. Characterization of phorbol esters activity on individual mammalian protein kinase C isoforms, using the yeast phenotypic assay. Eur J Pharmacol. 2004;491(2–3):101–110.
  • Slater SJ, Ho C, Kelly MB, et al. Protein kinase Cα contains two activator binding sites that bind phorbol esters and diacylglycerols with opposite affinities. J Biol Chem. 1996;271:4627–4631.
  • Zhou P, Miao Q, Yan F, et al. Is protein context responsible for peptide-mediated interactions? Mol Omics. 2019;15(4):280–295.
  • Tian F, Yang C, Wang C, et al. Mutatomics analysis of the systematic thermostability profile of Bacillus subtilis lipase A. J Mol Model. 2014;20(6):2257.
  • Zhou P, Hou S, Bai Z, et al. Disrupting the intramolecular interaction between proto-oncogene c-Src SH3 domain and its self-binding peptide PPII with rationally designed peptide ligands. Artif Cells Nanomed Biotechnol. 2018;46(6):1122–1131.
  • Kozakov D, Grove LE, Hall DR, et al. The FTMap family of web servers for determining and characterizing ligand-binding hot spots of proteins. Nat Protoc. 2015;10(5):733–755.
  • Luo H, Du T, Zhou P, et al. Molecular docking to identify associations between drugs and class I human leukocyte antigens for predicting idiosyncratic drug reactions. CCHTS. 2015;18(3):296–304.
  • Allen WJ, Balius TE, Mukherjee S, et al. DOCK 6: impact of new features and current docking performance. J Comput Chem. 2015;36(15):1132–1156.
  • Duan Y, Wu C, Chowdhury SS, et al. A point-charge force field for molecular mechanics simulations of proteins. J Comput Chem. 2003;24(16):1999–2012.
  • Yang C, Wang C, Zhang S, et al. Structural and energetic insights into the intermolecular interaction among human leukocyte antigens, clinical hypersensitive drugs and antigenic peptides. Mol Simul. 2015;41(9):741–751.
  • Li Z, Yan F, Miao Q, et al. Self-binding peptides: binding-upon-folding versus folding-upon-binding. J Theor Biol. 2019;469:25–34.
  • Wang J, Wolf RM, Caldwell JW, Kollman PA, et al. Development and testing of a general amber force field. J Comput Chem. 2004;25(9):1157–1174.
  • Bayly CI, Cieplak P, Cornell WD, et al. A well-behaved electrostatic potential based method using charge restraints for deriving atomic charges – the RESP model. J Phys Chem. 1993;97(40):10269–10280.
  • Yang C, Zhang S, He P, et al. Self-binding peptides: folding or binding. J Chem Inf Model. 2015;55(2):329–342.
  • Yang C, Zhang S, Bai Z, et al. A two-step binding mechanism for the self-binding peptide recognition of target domains. Mol Biosyst . 2016;12(4):1201–1213.
  • Bai Z, Hou S, Zhang S, et al. Targeting self-binding peptides as a novel strategy to regulate protein activity and function: a case study on the proto-oncogene tyrosine protein kinase c-Src. J Chem Inf Model. 2017;57(4):835–845.
  • Zhou P, Yan F, Miao Q, et al. Why the first self-binding peptide of human c-Src kinase does not contain class II motif but can bind to its cognate Src homology 3 domain in class II mode?. J Biomol Struct Dyn. 2020. DOI:10.1080/07391102.2019.1709547
  • Zhou P, Zhang S, Wang Y, et al. Structural modeling of HLA-B*1502 peptide carbamazepine T-cell receptor complex architecture: implication for the molecular mechanism of carbamazepine-induced Stevens-Johnson syndrome toxic epidermal necrolysis. J Biomol Struct Dyn. 2016;34(8):1806–1817.
  • Genheden S, Ryde U. The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. Expert Opin Drug Discov. 2015;10(5):449–461.
  • Tian F, Lv Y, Zhou P, et al. Characterization of PDZ domain-peptide interactions using an integrated protocol of QM/MM, PB/SA, and CFEA analyses. J Comput Aided Mol Des. 2011;25(10):947–958.
  • Yu H, Zhou P, Deng M, et al. Indirect readout in protein-peptide recognition: a different story from classical biomolecular recognition. J Chem Inf Model. 2014;54(7):2022–2032.
  • Shen YM, Chertihin OI, Biltonen RL, et al. Lipid-dependent activation of protein kinase Cα by normal alcohols. J Biol Chem. 1999;274(48):34036–34044.
  • Zhang G, Kazanietz MG, Blumberg PM, et al. Crystal structure of the Cys2 activator-binding domain of protein kinase Cδ in complex with phorbol ester. Cell. 1995;81(6):917–924.
  • Ren Y, Chen X, Feng M, et al. Gaussian process: a promising approach for the modeling and prediction of peptide binding affinity to MHC proteins. PPL. 2011;18(7):670–678.
  • Li Z, Miao Q, Yan F, et al. Machine learning in quantitative protein-peptide affinity prediction: implications for therapeutic peptide design. CDM. 2019;20(3):170–176.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.