178
Views
0
CrossRef citations to date
0
Altmetric
Review Articles

The hidden role of the Sigma1 receptor in muscle cells

&
Pages 201-208 | Received 08 Oct 2019, Accepted 06 Feb 2020, Published online: 14 Feb 2020

References

  • Hanner M, Moebius FF, Flandorfer A, et al. Purification, molecular cloning, and expression of the mammalian sigma1-binding site. Proc Natl Acad Sci USA. 1996;93(15):8072–8077.
  • Kekuda R, Prasad PD, Fei YJ, et al. Cloning and functional expression of the human type 1 sigma receptor (hSigmaR1). Biochem Biophys Res Commun. 1996;229(2):553–558.
  • Seth P, Fei YJ, Li HW, et al. Cloning and functional characterization of a sigma receptor from rat brain. J Neurochem. 2002;70(3):922–931.
  • Pan YX, Mei J, Xu J, et al. Cloning and characterization of a mouse sigma1 receptor. J Neurochem. 2002;70(6):2279–2285.
  • Moebius FF, Reiter RJ, Hanner M, et al. High affinity of sigma 1-binding sites for sterol isomerization inhibitors: evidence for a pharmacological relationship with the yeast sterol C8–C7 isomerase. Br J Pharmacol. 1997;121(1):1–6.
  • Mei J, Pasternak GW. Molecular cloning and pharmacological characterization of the rat sigma1 receptor. Biochem Pharmacol. 2001;62(3):349–355.
  • Prasad PD, Li HW, Fei Y-J, et al. Exon-intron structure, analysis of promoter region, and chromosomal localization of the human type 1 sigma receptor gene. J Neurochem. 2002;70(2):443–451.
  • Schutze MP, Peterson PA, Jackson MR. An N-terminal double-arginine motif maintains type II membrane proteins in the endoplasmic reticulum. Embo J. 1994;13(7):1696–1705.
  • Guitart X, Codony X, Monroy X. Sigma receptors: biology and therapeutic potential. Psychopharmacology (Berl). 2004;174(3):301–319.
  • Itzhak Y, Alerhand S. Differential regulation of sigma and PCP receptors after chronic administration of haloperidol and phencyclidine in mice. Faseb J. 1989;3(7):1868–1872.
  • Al-Saif A, Al-Mohanna F, Bohlega S. A mutation in sigma-1 receptor causes juvenile amyotrophic lateral sclerosis. Ann Neurol. 2011;70(6):913–919.
  • Kim HJ, Kwon MJ, Choi WJ, et al. Mutations in UBQLN2 and SIGMAR1 genes are rare in Korean patients with amyotrophic lateral sclerosis. Neurobiol Aging. 2014;35(8):e1957–e1958.
  • Uchida N, Ujike H, Tanaka Y, et al. A variant of the sigma receptor type-1 gene is a protective factor for Alzheimer disease. Am J Geriatr Psychiatry. 2005;13(12):1062–1066.
  • Huang Y, Zheng L, Halliday G, et al. Genetic polymorphisms in sigma- 1 receptor and apolipoprotein E interact to influence the severity of Alzheimer’s disease. CAR. 2011;8(7):765–770.
  • Feher A, Juhasz A, Laszlo A, et al. Association between a variant of the sigma-1 receptor gene and Alzheimer’s disease. Neurosci Lett. 2012;517(2):136–139.
  • Maruszak A, Safranow K, Gacia M, et al. Sigma receptor type 1 gene variation in a group of Polish patients with Alzheimer’s disease and mild cognitive impairment. Dement Geriatr Cogn Disord. 2007;23(6):432–438.
  • Ohmori O, Shinkai T, Suzuki T, et al. Polymorphisms of the sigma(1) receptor gene in schizophrenia: an association study. Am J Med Genet. 2000;96(1):118–122.
  • Uchida N, Ujike H, Nakata K, et al. No association between the sigma receptor type 1 gene and schizophrenia: results of analysis and meta-analysis of case-control studies. BMC Psychiatry. 2003;3(1):13.
  • Satoh F, Miyatake R, Furukawa A, et al. Lack of association between sigma receptor gene variants and schizophrenia. Psychiatry Clin Neurosci. 2004;58(4):359–363.
  • Takizawa R, Hashimoto K, Tochigi M, et al. Association between sigma-1 receptor gene polymorphism and prefrontal hemodynamic response induced by cognitive activation in schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry. 2009;33(3):491–498.
  • Ohi K, Hashimoto R, Yasuda Y, et al. The SIGMAR1 gene is associated with a risk of schizophrenia and activation of the prefrontal cortex. Prog Neuropsychopharmacol Biol Psychiatry. 2011;35(5):1309–1315.
  • Gonzalez-Alvear GM, Werling LL. Sigma1 Receptors in rat striatum regulate NMDA stimulated [3H]dopamine release via a presynaptic mechanism. Eur J Pharmacol. 1995;294(2–3):713–719.
  • Schetz JA, Perez E, Liu R, et al. A prototypical Sigma-1 receptor antagonist protects against brain ischemia. Brain Res. 2007;1181:1–9.
  • Szatkowski M, Attwell D. Triggering and execution of neuronal death in brain ischaemia: two phases of glutamate release by different mechanisms. Trends Neurosci. 1994;17(9):359–365.
  • Shen YC, Wang YH, Chou YC, et al. Dimemorfan protects rats against ischemic stroke through activation of sigma-1 receptor-mediated mechanisms by decreasing glutamate accumulation. J Neurochem. 2008;104(2):558–572.
  • Katnik C, Guerrero WR, Pennypacker KR, et al. Sigma-1 receptor activation prevents intracellular calcium dysregulation in cortical neurons during in vitro ischemia. J Pharmacol Exp Ther. 2006;319(3):1355–1365.
  • Spruce BA, Campbell LA, McTavish N, et al. Small molecule antagonists of the sigma-1 receptor cause selective release of the death program in tumor and self-reliant cells and inhibit tumor growth in vitro and in vivo. Cancer Res. 2004;64(14):4875–4886.
  • Brent PJ, Saunders H, Dunkley PR. Intrasynaptosomal free calcium levels in rat forebrain synaptosomes: modulation by sigma receptor ligands. Neurosci Lett. 1996;211(2):138–142.
  • Hayashi T, Maurice T, Su TP. Ca(2+) signaling via sigma(1)-receptors: novel regulatory mechanism affecting intracellular Ca(2+) concentration. J Pharmacol Exp Ther. 2000;293(3):788–798.
  • Aydar E, Palmer CP, Klyachko VA, et al. The sigma receptor as a ligand-regulated auxiliary potassium channel subunit. Neuron. 2002;34(3):399–410.
  • Cheng ZX, Lan DM, Wu PY, et al. Neurosteroid dehydroepiandrosterone sulfate inhibits persistent sodium current in rat medial prefrontal cortex via activation of sigma-1 receptors. Exp Neurol. 2008;210(1):128–136.
  • Renaudo A, L'Hoste S, Guizouarn H, et al. Cancer cell cycle modulated by a functional coupling between sigma-1 receptors and Cl-channels. J Biol Chem. 2007;282(4):2259–2267.
  • Lupardus PJ, Wilke RA, Aydar E, et al. Membrane-delimited coupling between sigma receptors and K + channels in rat neurohypophysial terminals requires neither G-protein nor ATP. J Physiol. 2000;526(3):527–539.
  • Pal A, Fontanilla D, Gopalakrishnan A, et al. The sigma-1 receptor protects against cellular oxidative stress and activates antioxidant response elements. Eur J Pharmacol. 2012;682(1–3):12–20.
  • Duchen MR. Mitochondria and calcium: from cell signaling to cell death. J Physiol. 2000;529(1):57–68.
  • Hayashi T, Rizzuto R, Hajnoczky G, et al. MAM: more than just a housekeeper. Trends Cell Biol. 2009;19(2):81–88.
  • Szabadkai Grgy, Bianchi Katiuscia, Várnai Péter, et al. Chaperone-mediated coupling of endoplasmic reticulum and mitochondrial Ca2+ channels. J Cell Biol. 2006;175(6):901–911.
  • Kirichok Y, Krapivinsky G, Clapham DE. The mitochondrial calcium uniporter is a highly selective ion channel. Nature. 2004;427(6972):360–364.
  • Rostovtseva TK, Bezrukov SM. VDAC regulation: role of cytosolic proteins and mitochondrial lipids. J Bioenerg Biomembr. 2008;40(3):163–170.
  • Hopper RK, Carroll S, Aponte AM, et al. Mitochondrial matrix phosphoproteome: effect of extra mitochondrial calcium. Biochemistry. 2006;45(8):2524–2536.
  • Alzayady KJ, Wojcikiewicz RJ. The role of Ca2+ in triggering inositol 1,4,5-trisphosphate receptor ubiquitination. Biochem J. 2005;392(3):601–606.
  • Bhanumathy CD, Nakao SK, Joseph SK. Mechanism of proteasomal degradation of inositol trisphosphate receptors in CHOK1 cells. J Biol Chem. 2006;281(6):3722–3730.
  • Mori T, Hayashi T, Hayashi E, et al. Sigma-1 receptor chaperone at the ER-mitochondrion interface mediates the mitochondrion-ER-nucleus signaling for cellular survival. PLoS One. 2013;8(10):e76941.
  • Eisner V, Csordas G, Hajnóczky G. Interactions between sarco-endoplasmic reticulum and mitochondria in cardiac and skeletal muscle – pivotal roles in Ca2+ and reactive oxygen species signaling. J. Cell Sci. 2013;126(14):2965–2978.
  • Hong TT, Shaw RM. Cardiac T-tubule microanatomyand function. Physiol Rev. 2017;97(1):227–252.
  • Best JM, Kamp TJ. Different subcellular populations of L-type Ca2_ channels exhibitunique regulation and functional roles in cardiomyocytes. J Mol Cell Cardiol. 2012;52(2):376–387.
  • Pasek M, Simurda J, Orchard CH. Role of t-tubules in the control of trans-sarcolemmal ion flux and intracellular Ca2+ in a model of the rat cardiac ventricular myocyte. Eur Biophys J. 2012;41:491–503.
  • Brookes PS, Yoon Y, Robotham JL, et al. Calcium, ATP, and ROS: a mitochondrial love-hate triangle. Am J Physiol. 2004;287(4):C817–C833.
  • Pacher P, Thomas AP, Hajnoczky G. Ca2+ marks: miniature calciumsignals in single mitochondria driven by ryanodine receptors. Proc Natl Acad Sci USA. 2002;99(4):2380–2385.
  • Davidson SM, Yellon DM, Murphy MP, et al. Slow calcium waves and redox changes precede mitochondrial permeability transition pore opening in the intact heart during hypoxia and reoxygenation. Cardiovasc. Res. 2012;93(3):445–453.
  • Bhuiyan S, Fukunaga K, Tagashira H. Crucial interactions between selective serotonin uptake inhibitors and Sigma-1 receptor in heart failure. J Pharmacol Sci. 2013;121(3):177–184.
  • Abdullah CS, Alam S, Aishwarya R, et al. Cardiac dysfunction in the Sigma 1 receptor knockout mouse associated with impaired mitochondrial dynamics and bioenergetics. J Am Heart Assoc. 2018;7(20):e009775.
  • Alam S, Abdullah CS, Aishwarya R, et al. Sigmar1 regulates endoplasmic reticulum stress-induced C/EBP-homologous protein expression in cardiomyocytes. Biosc Rep. 2017;37(4):BSR20170898.
  • Yamamoto K, Sato T, Matsui T, et al. Transcriptional induction of mammalian ER quality control proteins is mediated by single or combined action of ATF6_ and XBP1. Develop Cell. 2007;13(3):365–376.
  • Tagashira H, Matsumoto T, Taguchi K, et al. Vascular endothelial σ1-receptor stimulation with SA4503rescues aortic relaxation via Akt/eNOS signaling in ovariectomized rats with aortic banding. Circ J. 2013;77:2831–2840.
  • Klee CB, Ren H, Wang X. Regulation of the calmodulin-stimulated protein phosphatase, calcineurin. J Biol Chem. 1998;273(22):13367–13370.
  • Cameron AM, Steiner JP, Roskams AJ, et al. Calcineurin associated with the inositol 1,4,5-trisphosphate receptor-FKBP12 complex modulates Ca2+ flux. Cell. 1995;83(3):463–472.
  • Blaeser F, Ho N, Prywes R, et al. Ca(2+)-dependent gene expression mediated by MEF2 transcription factors. J Biol Chem. 2000;275(1):197–209.
  • Trushin SA, Pennington KN, Algeciras-Schimnich A, et al. Protein kinase C and calcineurin synergize to activate IkappaB kinase and NF-kappaB in T lymphocytes. J Biol Chem. 1999;274(33):22923–22931.
  • Hegyi B, Bers DM, Bossuyt J. CaMKII signaling in heart diseases: emerging role in diabetic cardiomyopathy. J Mol Cell Card. 2019;127:246–259.
  • Zhang T, Kohlhaas M, Backs J, et al. CaMKIIdelta isoforms differentially affect calcium handling but similarly regulate HDAC/MEF2 transcriptional responses. J Biol Chem. 2007;282(48):35078–35087.
  • Hama N, Paliogianni F, Fessler BJ, et al. Calcium/calmodulin dependent protein kinase II downregulates both calcineurin and protein kinase C-mediated pathways for cytokine gene transcription in human T cells. J Exp Med. 1995;181(3):1217–1222.
  • MacDonnell S, Weisser-Thomas J, Kubo H, et al. CaMKII negatively regulates calcineurin–NFAT signaling in cardiac myocytes. Circ Res. 2009;14:316–325.
  • Park CH, Kim YS, Kim YH, et al. Calcineurin mediates AKT dephosphorylation in the ischemic rat retina. Brain Res. 2008;1234:148–157.
  • Wang L, Wormstone IM, Reddan JR, et al. Growth factor receptor signaling in human lens cells: role of the calcium store. Exp Eye Res. 2005;80(6):885–895.
  • Mari Y, Katnik C, Cuevas J. SigmaR-1 receptor inhibition of ASIC1a channels is dependent on a pertussis toxin-sensitive G-Protein and an AKAP150/calcineurin complex. Neurochem Res. 2015;40(10):2055–2067.
  • Pabba M. The essential roles of protein-protein interaction in sigma-1 receptor functions. Front Cell Neurosci. 2013;7:50
  • Hayashi T, Su TP. Regulating ankyrin dynamics: roles of sigma-1 receptors. PNAS. 2001;98(2):491–496.
  • Camors E, Mohler PJ, Bers DM, et al. Ankyrin-B reduction enhances Ca spark-mediated SR Ca release promoting cardiac myocyte arrhythmic activity. J Mol Cell Card. 2012;52(6):1240–1248.
  • Tuvia S, Buhusi M, Davis L, et al. Ankyrin-B is required for intracellular sorting of structurally diverse Ca2+ homeostasis proteins. J Cell Biol. 1999;147(5):995–1007.
  • Popescu Iuliana, Galice Samuel, Mohler PeterJ, et al. Elevated local [Ca2+] and CaMKII promote spontaneous Ca2+ release in ankyrin-B deficient hearts. Cardiovasc Res. 2016;111(3):287–294.,
  • Tagashira H, Bhuiyan S, Fukunaga K. Diverse regulation of IP3 and ryanodine receptors by pentazocine through sigma1-receptor in cardiomyocytes. Am J Physiol Heart Circ Physiol. 2013;305(8):H1201–H1212.
  • Su TP, Su TC, Nakamura Y, et al. Sigma-1 receptor as a pluripotent modulator in the living system. Trends Pharmacol Sci. 2016;37(4):262–278.
  • Fernandez-Sanz C, Ruiz-Meana M, Miro-Casas E, et al. Defective sarcoplasmic reticulum mitochondria calcium exchange in aged mouse myocardium. Cell Death Dis. 2014;5(12):e1573–e1573.
  • Herrera-Cruz MS, Simmen T. Of yeast, mice and men: MAMs come in two flavors. Biol Direct. 2017;12(1):3
  • Paillard M, Tubbs E, Thiebaut PA, et al. Depressing mitochondria-reticulum interactions protects cardiomyocytes from lethal hypoxia-reoxygenation injury. Circ. 2013;128(14):1555–1565.
  • Chaudhari N, Talwar P, Parimisetty A, et al. A molecular web: endoplasmic reticulum stress, inflammation, and oxidative stress. Front Cell Neurosci. 2014;8:213
  • Ha Y, Dun Y, Thangaraju M, et al. Sigma receptor 1 modulates endoplasmic reticulum stress in retinal neurons. Invest Ophthalmol Vis Sci. 2011;52(1):527–540.
  • Mitsuda T, Omi T, Tanimukai H, et al. Sigma-1Rs are upregulated via PERK/eIF2a/ATF4 pathway and execute protective function in ER stress. Bioch Biophys Res Comm. 2011;415(3):519–525.
  • Raturi A, Simme T. Where the endoplasmic reticulum and the mitochondrion tie the knot: the mitochondria-associated membrane (MAM). Bioch Biophys Acta. 2013;1833(1):213–224.
  • Lee AS. The ER chaperone and signaling regulator GRP78/BiP as a monitor of endoplasmic reticulum stress. Methods. 2005;35(4):373–381.
  • Taylor CW. Regulation of IP3 receptors by cyclic AMP. Cell Calc. 2017;63:48–52.
  • Yaniv Y, Spurgeon HA, Ziman BD, et al. Ca2+/calmodulin-dependent protein kinase II (CaMKII)activity and sinoatrial nodal pacemaker cell energetics. PLOS One. 2013;8(2):e57079.
  • Zhang P. CaMKII: the molecular villain that aggravates cardiovascular disease. Exp Ther Med. 2017;13(3):815–820.
  • Tscheschner H, Meinhardt E, Schlegel P, et al. CaMKII activation participates in doxorubicin cardiotoxicity and is attenuated by moderate GRP78 overexpression. Plos One. 2019;29:1–20.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.