303
Views
15
CrossRef citations to date
0
Altmetric
Original Articles

Curcumin analogs as the inhibitors of TLR4 pathway in inflammation and their drug like potentialities: a computer-based study

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 324-338 | Received 27 Jan 2020, Accepted 03 Mar 2020, Published online: 30 Mar 2020

References

  • Ricciotti E, FitzGerald GA. Prostaglandins and inflammation. Arterioscler Thromb Vasc Biol. 2011;31(5):986–1000.
  • Liu CH, Abrams ND, Carrick DM, et al. Imaging inflammation and its resolution in health and disease: current status, clinical needs, challenges, and opportunities. FASEB J. 2019;33(12):13085–13097.
  • Medzhitov R. Origin and physiological roles of inflammation. Nature. 2008;454(7203):428–435.
  • Lon HK, Liu D, Jusko WJ. Pharmacokinetic/pharmacodynamic modeling in inflammation. Critic Rev Biomed Eng. 2012;40(4):295–312.
  • Horadagoda NU, Knox KM, Gibbs HA, et al. Acute phase proteins in cattle: discrimination between acute and chronic inflammation. Vet Rec. 1999;144(16):437–441.
  • Lee JW, Lee YK, Yuk DY, et al. Neuro-inflammation induced by lipopolysaccharide causes cognitive impairment through enhancement of beta-amyloid generation. J Neuroinflammation. 2008;5(1):37.
  • Feghali CA, Wright TM. Cytokines in acute and chronic inflammation. Front Biosci. 1997;2(1):d12–26.
  • Cox SS, Speaker KJ, Beninson LA, Craig WC, et al. Adrenergic and glucocorticoid modulation of the sterile inflammatory response. Brain Behav Immun. 2014;36:183–192.
  • Libby P. Inflammation and cardiovascular disease mechanisms. Am J Clin Nutr. 2006;83(2):456S–4560. S.
  • Coussens LM, Werb Z. Inflammation and cancer. Nature. 2002;420(6917):860–867.
  • Zvaifler NJ. The immunopathology of joint inflammation in rheumatoid arthritis. Adv Immunol. 1973;16:265–336.
  • Bauer ME, Teixeira AL. Inflammation in psychiatric disorders: what comes first? Ann NY Acad Sci. 2019;1437(1):57–67.
  • Kaczorowski DJ, Nakao A, Vallabhaneni R, et al. Mechanisms of toll-like receptor 4 (TLR4)-mediated inflammation after cold ischemia/reperfusion in the heart. Transplantation. 2009;87(10):1455–1463.
  • Blackwell TS, Christman JW. The role of nuclear factor-κ B in cytokine gene regulation. Am J Respir Cell Mol Biol. 1997;17(1):3–9.
  • Zhang B, Ramesh G, Uematsu S, et al. TLR4 signaling mediates inflammation and tissue injury in nephrotoxicity. J Am Soc Nephrol. 2008;19(5):923–932.
  • Poligone B, Baldwin AS. Positive and negative regulation of NF-κB by COX-2 ROLES OF DIFFERENT PROSTAGLANDINS. J Biol Chem. 2001;276(42):38658–38664.
  • Fitzgerald KA, McWhirter SM, Faia KL, et al. IKKε and TBK1 are essential components of the IRF3 signaling pathway. Nat Immunol. 2003;4(5):491–496.
  • Tak PP, Firestein GS. NF-κB: a key role in inflammatory diseases. J Clin Invest. 2001;07(1):7–11.
  • Zhao P, In Wong K, Sun X, et al. TBK1 at the crossroads of inflammation and energy homeostasis in adipose tissue. Cell. 2018;172(4):731–743.
  • Kishore N, Huynh QK, Mathialagan S, et al. IKK-i and TBK-1 are enzymatically distinct from the homologous enzyme IKK-2 COMPARATIVE ANALYSIS OF RECOMBINANT HUMAN IKK-i, TBK-1, AND IKK-2. J Biol Chem. 2002;277(16):13840–13847.
  • Yu M, Ives D, Ramesha CS. Synthesis of prostaglandin E2 ethanolamide from anandamide by cyclooxygenase-2. J Biol Chem. 1997;272(34):21181–21186.
  • Hasan M, Yan N. Therapeutic potential of targeting TBK1 in autoimmune diseases and interferonopathies. Pharmacol Res. 2016;111:336–342.
  • Burke JR, Pattoli MA, Gregor KR, et al. BMS-345541 is a highly selective inhibitor of IκB kinase that binds at an allosteric site of the enzyme and blocks NF-κB-dependent transcription in mice. J Biol Chem. 2003;278(3):1450–1456.
  • Voilley N, de Weille J, Mamet J, et al. Nonsteroid anti-inflammatory drugs inhibit both the activity and the inflammation-induced expression of acid-sensing ion channels in nociceptors. J Neurosci. 2001;21(20):8026–8033.
  • Bjarnason I, Hayllar J, Dre A, Macpherson NJ, et al. Side effects of nonsteroidal anti-inflammatory drugs on the small and large intestine in humans. Gastroenterology. 1993;104(6):1832–1847.
  • Mendes RT, Stanczyk CP, Sordi R, et al. Selective inhibition of cyclooxygenase-2: risks and benefits. Rev Bras Reumatol. 2012;52(5):767–782.
  • Rao P, Knaus EE. Evolution of nonsteroidal anti-inflammatory drugs (NSAIDs): cyclooxygenase (COX) inhibition and beyond. J Pharm Pharm Sci. 2008;11(2):81–110.
  • Martel-Pelletier J, Lajeunesse D, Reboul P, et al. Therapeutic role of dual inhibitors of 5-LOX and COX, selective and non-selective non-steroidal anti-inflammatory drugs. Ann Rheum Dis. 2003;62(6):501–509.
  • Payne R. Limitations of NSAIDs for pain management: toxicity or lack of efficacy? The Journal of Pain. 2000;1(3):14–18.
  • Lisowska B, Kosson D, Domaracka K. Positives and negatives of nonsteroidal anti-inflammatory drugs in bone healing: the effects of these drugs on bone repair. Drug Des Devel Ther. 2018;12:1809–1814.
  • De Gaetano G, Donati MB, Cerletti C. Prevention of thrombosis and vascular inflammation: benefits and limitations of selective or combined COX-1, COX-2 and 5-LOX inhibitors. Trends Pharmacol Sci. 2003;24(5):245–252.
  • Asenso J, Yang XD, Yu J, et al. Plant-based anti-inflammatory agents: progress from Africa and China. Clin Anti Inflamm Anti Allergy Drug. 2015;2(1):52–66.
  • Sarkar B, Ullah MA, Islam MS, et al. Potential of medicinal plants from Bangladesh and their effective compounds against cancer. J Pharm Phytochem. 2019;8(3):827–833.
  • Maione F, Russo R, Khan H, et al. Medicinal plants with anti-inflammatory activities. Nat Prod Res. 2016;30(12):1343–1352.
  • Goel A, Boland CR, Chauhan DP. Specific inhibition of cyclooxygenase-2 (COX-2) expression by dietary curcumin in HT-29 human colon cancer cells. Cancer Lett. 2001;172(2):111–118.
  • Kohli K, Ali J, Ansari MJ, et al. Curcumin: a natural antiinflammatory agent. Indian J Pharmacol. 2005;37(3):141.
  • Meng Z, Yan C, Deng Q, et al. Curcumin inhibits LPS-induced inflammation in rat vascular smooth muscle cells in vitro via ROS-relative TLR4-MAPK/NF-κB pathways. Acta Pharmacol Sin. 2013;34(7):901–911.
  • Zhu HT, Bian C, Yuan JC, et al. Curcumin attenuates acute inflammatory injury by inhibiting the TLR4/MyD88/NF-κB signaling pathway in experimental traumatic brain injury. J Neuroinflamm. 2014;11(1):59.
  • Yuniarti N, Nugroho PA, Asyhar A, et al. In vitro and In Silico Studies on Curcumin and Its Analogues as Dual Inhibitors for cyclooxygenase-1 (COX-1) and cyclooxygenase-2 (COX-2). ITB J Sci. 2012;44(1):51–66.
  • Shishodia S, Potdar P, Gairola CG, et al. Curcumin (diferuloylmethane) down-regulates cigarette smoke-induced NF-κB activation through inhibition of IκBα kinase in human lung epithelial cells: correlation with suppression of COX-2, MMP-9 and cyclin D1. Carcinogenesis. 2003;24(7):1269–1279.
  • Chun KS, Kang JY, Kim OH, et al. Effects of yakuchinone A and yakuchinone В on the Phorbol ester-induced expression of COX-2 and iNOS and activation of NF-kB in mouse skin. J Environ Pathol Toxicol Oncol. 2002;21(2):9.
  • Simerska P, Moyle PM, Toth I. Modern lipid‐, carbohydrate‐, and peptide‐based delivery systems for peptide, vaccine, and gene products. Med Res Rev. 2011;31(4):520–547.
  • Park SJ, Lee MY, Son BS, et al. TBK1-targeted suppression of TRIF-dependent signaling pathway of Toll-like receptors by 6-shogaol, an active component of ginger. Biosci Biotechnol Biochem. 2009;73(7):1474–1478.
  • Anand P, Thomas SG, Kunnumakkara AB, et al. Activities of curcumin and its analogues (Congeners) made by man and Mother Nature. Biochem Pharmacol. 2008;76(11):1590–1611.
  • Kiuchi F, Goto Y, Sugimoto N, et al. Nematocidal activity of turmeric: synergistic action of curcuminoids. Chem Pharm Bull. 1993;41(9):1640–1643.
  • Kim SO, Kundu JK, Shin YK, et al. [6]-Gingerol inhibits COX-2 expression by blocking the activation of p38 MAP kinase and NF-κ B in phorbol ester-stimulated mouse skin. Oncogene. 2005;24(15):2558–2567.
  • Huang WY, Cai YZ, Zhang Y. Natural phenolic compounds from medicinal herbs and dietary plants: potential use for cancer prevention. Nutr Cancer. 2009;62(1):1–20.
  • Keum YS, Kim J, Lee KH, et al. Induction of apoptosis and caspase-3 activation by chemopreventive [6]-paradol and structurally related compounds in KB cells. Cancer Lett. 2002;177(1):41–47.
  • Ling H, Yang H, Tan SH, et al. 6‐Shogaol, an active constituent of ginger, inhibits breast cancer cell invasion by reducing matrix metalloproteinase‐9 expression via blockade of nuclear factor‐κB activation. Br J Pharmacol. 2010;161(8):1763–1777.
  • Masuda T, Matsumura H, Oyama Y, et al. Synthesis of (±)-cassumunins A and B, new curcuminoid antioxidants having protective activity of the living cell against oxidative damage. J Nat Prod. 1998;61(5):609–613.
  • Yogosawa S, Yamada Y, Yasuda S, et al. Dehydrozingerone, a structural analogue of curcumin, induces cell-cycle arrest at the G2/M phase and accumulates intracellular ROS in HT-29 human colon cancer cells. J Nat Prod. 2012;75(12):2088–2093.
  • Lin CC, Ho CT, Huang MT. Mechanistic studies on the inhibitory action of dietary dibenzoylmethane, a beta-diketone analogue of curcumin, on 7, 12-dimethylbenz [a] anthracene-induced mammary tumorigenesis. Proc Natl Sci Counc Repub China B. 2001;25(3):158–65.
  • Fujisawa S, Atsumi T, Ishihara M, et al. Cytotoxicity, ROS-generation activity and radical-scavenging activity of curcumin and related compounds. Anticancer Res. 2004;24(2B):563–570.
  • Flynn DL, Rafferty MF, Boctor AM. Inhibition of 5-hydroxy-eicosatetraenoic acid (5-HETE) formation in intact human neutrophils by naturally-occurring diarylheptanoids: inhibitory activities of curcuminoids and yakuchinones. Prostaglandins Leukot Med. 1986;22(3):357–360.
  • Lipinski CA, Lombardo F, Dominy BW, et al. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev. 1997;23(1–3):3–25.
  • Ullah A, Prottoy NI, Araf Y, et al. Molecular dcking and pharmacological property analysis of phytochemicals from clitoria ternatea as potent inhibitors of cell cycle checkpoint proteins in the cyclin/CDK pathway in cancer cells. Comput Mol Biosci. 2019;09(03):81–94.
  • Bolton EE, Wang Y, Thiessen PA, et al. PubChem: integrated platform of small molecules and biological activities. Ann Rep Comput Chem. 2008;4:217–241.
  • Cheminformatics M. Nova ulica, SK-900 26 Slovensky Grob, Slovak Republic [Internet]. Bratislava University; 1986
  • Lucido MJ, Orlando BJ, Vecchio AJ, et al. Crystal structure of aspirin-acetylated human cyclooxygenase-2: insight into the formation of products with reversed stereochemistry. Biochemistry. 2016;55(8):1226–1238.
  • Xu G, Lo YC, Li Q, et al. Crystal structure of inhibitor of κB kinase β. Nature. 2011;472(7343):325–330.
  • Beyett TS, Gan X, Reilly SM, et al. Carboxylic acid derivatives of amlexanox display enhanced potency toward TBK1 and IKKε and reveal mechanisms for selective inhibition. Mol Pharmacol. 2018;94(4):1210–1219.
  • Schrödinger Release 2018-4: Protein Preparation Wizard; Epik, Schrödinger, LLC, New York (NY): 2016; Impact, Schrödinger, LLC, New York (NY): 2016; Prime, Schrödinger, LLC, New York (NY): 2018.
  • Kim S, Thiessen PA, Bolton EE, et al. PubChem substance and compound databases. Nucleic Acids Res. 2016;44(D1):D1202–13.
  • Schrödinger Release 2018–4: ligprep, schrödinger. New York (NY): LLC; 2018.
  • Schrödinger Release 2018–4: glide, schrödinger. New York (NY): LLC; 2018.
  • Ramírez D, Caballero J. Is it reliable to use common molecular docking methods for comparing the binding affinities of enantiomer pairs for their protein target? Int J Mol Sci. 2016;17(4):525.
  • Dassault Systèmes BIOVIA. Discovery studio visualizer, 19.1. San Diego(CA): Dassault Systèmes; 2019.
  • Lyne PD, Lamb ML, Saeh JC. Accurate prediction of the relative potencies of members of a series of kinase inhibitors using molecular docking and MM-GBSA scoring. J Med Chem. 2006;49(16):4805–4808.
  • Wishart DS, Knox C, Guo AC, et al. DrugBank: a knowledgebase for drugs, drug actions and drug targets. Nucleic Acids Res. 2008;36(1):D901–6.
  • Zhong H, Tran LM, Stang JL. Induced-fit docking studies of the active and inactive states of protein tyrosine kinases. J Mol Graphics Modell. 2009;28(4):336–346.
  • Yu H, Adedoyin A. ADME–Tox in drug discovery: integration of experimental and computational technologies. Drug Discov Today. 2003;8(18):852–861.
  • Hossain S, Sarkar B, Prottoy MN, et al. Thrombolytic activity, drug likeness property and ADME/T analysis of isolated phytochemicals from ginger (zingiber officinale) using in silico approaches. Modern Res Inflamm. 2019;8 (03):29–43.
  • Yang H, Lou C, Sun L, et al. admetSAR 2.0: web-service for prediction and optimization of chemical ADMET properties. Bioinformatics. 2019;35(6):1067–1069.
  • Pires DE, Blundell TL, Ascher DB. pkCSM: predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures. J Med Chem. 2015;58(9):4066–4072.
  • Filimonov DA, Lagunin AA, Gloriozova TA, et al. Prediction of the biological activity spectra of organic compounds using the PASS online web resource. Chem Heterocycl Comp. 2014;50(3):444–457.
  • Tarcsay Á, Keserű GM. In silico site of metabolism prediction of cytochrome P450-mediated biotransformations. Expert Opin Drug Metab Toxicol. 2011;7(3):299–312.
  • Zaretzki J, Bergeron C, Huang TW, et al. RS-WebPredictor: a server for predicting CYP-mediated sites of metabolism on drug-like molecules. Bioinformatics. 2013;29(4):497–498.
  • Schrödinger release 2018–4: jaguar, schrödinger. New York (NY): LLC; 2018.
  • Becke AD. A new mixing of Hartree–Fock and local density‐functional theories. J Chem Phys. 1993;98(2):1372–1377.
  • Gill PM, Johnson BG, Pople JA, Frisch MJ. The performance of the Becke—Lee—Yang—Parr (B—LYP) density functional theory with various basis sets. Chem Phys Lett. 1992;197(4–5):499–505.
  • Stephens PJ, Devlin FJ, Chabalowski CF, et al. Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. J Phys Chem. 1994;98(45):11623–11627.
  • Pearson RG. Absolute electronegativity and hardness correlated with molecular orbital theory. Proc Natl Acad Sci. 1986;83(22):8440–8441.
  • Parr RG, Yang W. International series of monographs on chemistry 16: density-functional theory of atoms and molecules. New York (NY): Oxford University Press; 1989.
  • Tian S, Wang J, Li Y, et al. The application of in silico drug-likeness predictions in pharmaceutical research. Adv Drug Delivery Rev. 2015;86:2–10.
  • Sarkar B, Islam SS, Ullah MA, et al. Computational assessment and pharmacological property breakdown of eight patented and candidate drugs against four intended targets in Alzheimer’s disease. Adv Biosci Biotechnol. 2019;10(11):405–430.
  • Gschwend DA, Good AC, Kuntz ID. Molecular docking towards drug discovery. J Mol Recognit. 1996;9(2):175–186.
  • Prottoy NI, Sarkar B, Ullah A, et al. Molecular docking and pharmacological property analysis of antidiabetic agents from medicinal plants of Bangladesh against type II diabetes: a computational approach. PharmTutor. 2019;7(9):6–15.
  • Shoichet BK, McGovern SL, Wei B, et al. Lead discovery using molecular docking. Curr Opin Chem Biol. 2002;6(4):439–446.
  • Sarkar B, Ullah MA, Islam SS. In silico analysis of some phytochemicals as potential anti-cancer agents targeting cyclin dependent kinase-2, human topoisomerase IIa and vascular endothelial growth factor receptor-2. bioRxiv. Cold Spring Harbor (NY); 2020.
  • Sun H, Li Y, Tian S, et al. Assessing the performance of MM/PBSA and MM/GBSA methods. 4. Accuracies of MM/PBSA and MM/GBSA methodologies evaluated by various simulation protocols using PDBbind data set. Phys Chem Chem Phys. 2014;16(31):16719–16729.
  • Tripathi A, Bankaitis VA. Molecular docking: from lock and key to combination lock. J Mol Med Clin Appl. 2017;2(1):10.16966/2575-0305.106.
  • Davis AM, Teague SJ. Hydrogen bonding, hydrophobic interactions, and failure of the rigid receptor hypothesis. Angew Chem Int Ed. 1999;38(6):736–749.
  • Garavito RM, DeWitt DL. The cyclooxygenase isoforms: structural insights into the conversion of arachidonic acid to prostaglandins. Biochim Biophys Acta. 1999;1441(2–3):278–287.
  • Yu T, Yi YS, Yang Y, et al. The pivotal role of TBK1 in inflammatory responses mediated by macrophages. Med Inflamm. 2012;2012:1–8.
  • Wang Y, Xing J, Xu Y, et al. In silico ADME/T modelling for rational drug design. Quart Rev Biophys. 2015;48(4):488–515.
  • Paul Gleeson M, Hersey A, Hannongbua S. In-silico ADME models: a general assessment of their utility in drug discovery applications. Curr Top Med Chem. 2011;11(4):358–381.
  • Li AP. Screening for human ADME/Tox drug properties in drug discovery. Drug Discov Today. 2001;6(7):357–366.
  • Geerts T, Vander Heyden Y. In silico predictions of ADME-tox properties: drug absorption.  Combinat Chem High Throughput Screen. 2011;14(5):339–361.
  • Anzenbacher P, Anzenbacherova E. Cytochromes P450 and metabolism of xenobiotics. Cmls, Cell Mol Life Sci. 2001;58(5):737–747.
  • Lamb DC, Waterman MR, Kelly SL, et al. Cytochromes P450 and drug discovery. Curr Opin Biotechnol. 2007;18(6):504–512.
  • De Graaf C, Vermeulen NP, Feenstra KA. Cytochrome P450 in silico: an integrative modeling approach. J Med Chem. 2005;48(8):2725–2755.
  • Ames BN, Gurney EG, Miller JA, et al. Carcinogens as frameshift mutagens: metabolites and derivatives of 2-acetylaminofluorene and other aromatic amine carcinogens. Proc Natl Acad Sci. 1972;69(11):3128–3132.
  • Xu C, Cheng F, Chen L, et al. In silico prediction of chemical Ames mutagenicity. J Chem Inf Model. 2012;52(11):2840–2847.
  • Priest B, Bell IM, Garcia M. Role of hERG potassium channel assays in drug development. Channels. 2008;2(2):87–93.
  • Hacker K, Maas R, Kornhuber J, et al. Substrate-dependent inhibition of the human organic cation transporter OCT2: a comparison of metformin with experimental substrates. PLoS One. 2015;10(9):e0136451.
  • Stepanchikova AV, Lagunin AA, Filimonov DA, et al. Prediction of biological activity spectra for substances: evaluation on the diverse sets of drug-like structures. Curr Med Chem. 2003;10(3):225–233.
  • Lagunin A, Stepanchikova A, Filimonov D, et al. PASS: prediction of activity spectra for biologically active substances. Bioinformatics. 2000;16(8):747–748.
  • Overington JP, Al-Lazikani B, Hopkins AL. How many drug targets are there? Nat Rev Drug Discov. 2006;5(12):993–996.
  • Lundstrom K. An overview on GPCRs and drug discovery: structure-based drug design and structural biology on GPCRs. Methods Mol Biol. 2009;552:51–66.
  • Mainardes RM, Silva LP. Drug delivery systems: past, present, and future. Curr Drug Targets. 2004;5(5):449–455.
  • Zhan CG, Nichols JA, Dixon DA. Ionization potential, electron affinity, electronegativity, hardness, and electron excitation energy: molecular properties from density functional theory orbital energies. J Phys Chem A. 2003;107(20):4184–4195.
  • Becke AD. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev A. 1988;38(6):3098–3100.
  • Young HY, Luo YL, Cheng HY, Hsieh WC, et al. Analgesic and anti-inflammatory activities of [6]-gingerol. J Ethnopharmacol. 2005;96(1–2):207–210.
  • Chun KS, Park KK, Lee J, et al. Inhibition of mouse skin tumor promotion by anti-inflammatory diarylheptanoids derived from Alpinia oxyphylla Miquel (Zingiberaceae). Oncol Res. 2002;13(1):37–45.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.