145
Views
6
CrossRef citations to date
0
Altmetric
Original Articles

Amyloid beta (1–42) downregulates adenosine-2b receptors in addition to mitochondrial impairment and cholinergic dysfunction in memory-sensitive mouse brain regions

& ORCID Icon
Pages 531-540 | Received 28 Apr 2020, Accepted 04 May 2020, Published online: 04 Jun 2020

References

  • Kalaria RN, Maestre GE, Arizaga R, et al. Alzheimer’s disease and vascular dementia in developing countries: prevalence, management, and risk factors. Lancet Neurol. 2008;7(9):812–826.
  • Patients C. 2019 Alzheimer’s disease facts and figures. Alzheimers Dement. 2019;15:321–387.
  • Birks J. Cholinesterase inhibitors for Alzheimer’s disease. Library (Lond). 2009;2012:1–3.
  • Ali TB, Schleret TR, Reilly BM, et al. Adverse effects of cholinesterase inhibitors in dementia, according to the pharmacovigilance databases of the United-States and Canada. PLOS One. 2015;10(12):e0144337–10.
  • Esparza TJ, Wildburger NC, Jiang H, et al. Soluble amyloid-beta aggregates from human Alzheimer’s disease brains. Sci. Rep. 2016;6:1–16.
  • Pepeu G, Grazia Giovannini M. The fate of the brain cholinergic neurons in neurodegenerative diseases. Brain Res. 2017;1670:173–184.
  • Agostinho P, Cunha R, Oliveira C. Neuroinflammation, oxidative stress and the pathogenesis of Alzheimer’s disease. CPD. 2010;16(25):2766–2778.
  • Swerdlow S, Burns RH, Khan JM. The Alzheimer’s disease mitochondrial cascade hypothesis. JAD. 2010;20(s2):S265–S279.
  • Reddy PH, Reddy TP. Mitochondria as a therapeutic target for aging and neurodegenerative diseases. Curr Alzheimer Res. 2011;8(4):393–409.
  • Cai Q, Tammineni P. Alterations in mitochondrial quality control in Alzheimer's disease. Front Cell Neurosci. 2016;10:24–17.
  • Manczak M, Calkins MJ, Reddy PH. Impaired mitochondrial dynamics and abnormal interaction of amyloid beta with mitochondrial protein Drp1 in neurons from patients with Alzheimer's disease: implications for neuronal damage. Hum Mol Genet. 2011;20(13):2495–2509.
  • Sheng ZH, Cai Q. Mitochondrial transport in neurons: Impact on synaptic homeostasis and neurodegeneration. Nat Rev Neurosci. 2012;13(2):77–93.
  • Fredholm BB, IJzerman AP, Jacobson KA, et al. International union of basic and clinical pharmacology. LXXXI. Nomenclature and classification of adenosine receptors-an update. Pharmacol Rev. 2011;63(1):1–34.
  • Arendash GW, Schleif W, Rezai-Zadeh K, et al. Caffeine protects Alzheimer's mice against cognitive impairment and reduces brain beta-amyloid production. Neuroscience. 2006;142(4):941–952.
  • Cellai L, Carvalho K, Faivre E, et al. The adenosinergic signaling: a complex but promising therapeutic target for Alzheimer's Disease. Front Neurosci. 2018;12:520–529.
  • Moidunny S, Vinet J, Wesseling E, et al. Adenosine A2B receptor-mediated leukemia inhibitory factor release from astrocytes protects cortical neurons against excitotoxicity. J Neuroinflammation. 2012;9:198.
  • Xu J, Bian X, Liu Y, et al. Adenosine A2 receptor activation ameliorates mitochondrial oxidative stress upon reperfusion through the posttranslational modification of NDUFV2 subunit of complex I in the heart. Free Radic Biol Med. 2017;106:208–218.
  • Koscsó B, Csóka B, Selmeczy Z, et al. Adenosine augments IL-10 production by microglial cells through an A2B adenosine receptor-mediated process. J Immunol. 2012;188(1):445–453.
  • Gonçalves FQ, Pires J, Pliassova A, et al. Adenosine A2b receptors control A1receptor-mediated inhibition of synaptic transmission in the mouse hippocampus. Eur J Neurosci. 2015;41:876–886.
  • Lin HB, Yang XM, Li TJ, et al. Memory deficits and neurochemical changes induced by C-reactive protein in rats: implication in Alzheimer's disease. Psychopharmacology (Berl). 2009;204(4):705–714.
  • Chen X, Hu J, Jiang L, et al. Brilliant Blue G improves cognition in an animal model of Alzheimer's disease and inhibits amyloid-β-induced loss of filopodia and dendrite spines in hippocampal neurons. Neuroscience. 2014;279:94–101.
  • Nillert N, Pannangrong W, Welbat JU, et al. Neuroprotective effects of aged garlic extract on cognitive dysfunction and neuroinflammation induced by β-amyloid in rats. Nutrients. 2017;9(1):24.
  • Herman JP, Watson SJ. The rat brain in stereotaxic coordinates (2nd edn). Trends Neurosci. 1987;10(10):439.
  • Morris R. Developments of a water-maze procedure for studying spatial learning in the rat. J Neurosci Methods. 1984;11(1):47–60.
  • Pandey S, Garabadu D. Piracetam facilitates the anti-amnesic but not anti-diabetic activity of metformin in experimentally induced type-2 diabetic encephalopathic rats. Cell Mol Neurobiol. 2017;37(5):791–802.
  • Kim JM, Park SK, Kang JY, et al. Green tea seed oil suppressed Aβ1-42-induced behavioral and cognitive deficit via the Aβ-related akt pathway. Int J Mol Sci. 2019;20:1865.
  • Van der Borght K, Havekes R, Bos T, et al. Exercise improves memory acquisition and retrieval in the Y-maze task: relationship with hippocampal neurogenesis. Behav Neurosci. 2007;121(2):324–334.
  • Muthuraju S, Maiti P, Solanki P, et al. Acetylcholinesterase inhibitors enhance cognitive functions in rats following hypobaric hypoxia. Behav Brain Res. 2009;203:1–14.
  • Zoukhri D, Kublin CL. Impaired neurotransmitter release from lacrimal and salivary gland nerves of a murine model of Sjögren’s syndrome. Investig Ophthalmol Vis Sci. 2001;42:925–932.
  • Lowry OH, Rosebrough NJ, Farr AL, et al. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951;193(1):265–275.
  • Liu D, Xiao B, Han F, et al. Single-prolonged stress induces apoptosis in dorsal raphe nucleus in the rat model of posttraumatic stress disorder. BMC Psychiatry. 2012;12:211.
  • Pedersen PL, Greenawalt JW, Reynafarje B, et al. Preparation and characterization of mitochondria and submitochondrial particles of rat liver and liver-derived tissues. Methods Cell Biol. 1978;20:411–481.
  • Ning B, Dial S, Sun Y, et al. Development of a high throughput screening assay for mitochondrial membrane potential in living cells. J Biomol Screen. 2008;7:383–389.
  • Chance B, Williams G. Respiratory enzymes in oxidative phosphorylation. J Biol Chem. 1955;217(1):409–428.
  • Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72:248–254.
  • Zhang L, Fang Y, Xu Y, et al. Curcumin improves amyloid β-peptide (1-42) induced spatial memory deficits through BDNF-ERK signaling pathway. PLOS One. 2015;10(6):e0131525.
  • Zueva I, Dias J, Lushchekina S, et al. New evidence for dual binding site inhibitors of acetylcholinesterase as improved drugs for treatment of Alzheimer's disease. Neuropharmacology. 2019;155:131–141
  • Poirier Y, Grimm A, Schmitt K, et al. Link between the unfolded protein response and dysregulation of mitochondrial bioenergetics in Alzheimer's disease. Cell Mol Life Sci. 2019;76(7):1419–1431.
  • Van Giau V, An SSA, Hulme JP. Mitochondrial therapeutic interventions in Alzheimer's disease. J Neurol Sci. 2018;395:62–70.
  • Albensi BC. Dysfunction of mitochondria: Implications for Alzheimer's disease. Int Rev Neurobiol. 2019;145:13–27. DOI:10.1016/bs.irn.2019.03.001
  • Yang X, Xin W, Yang XM, et al. A2B adenosine receptors inhibit superoxide production from mitochondrial complex I in rabbit cardiomyocytes via a mechanism sensitive to Pertussis toxin. Br J Pharmacol. 2011;163(5):995–1006.
  • Grube K, Rüdebusch J, Xu Z, et al. Evidance for an intracellular localization of the adenosine A2B receptor in rat cardiomyocytes. Basic Res Cardiol. 2011;106(3):385–396.
  • Cao W, Yuan Y, Liu X, et al. Adenosine kinase inhibition protects against cisplatin-induced nephrotoxicity. Am J Physiol Renal Physiol. 2019;317(1):F107–F115.
  • Rebola N, Oliveira CR, Cunha RA. Transducing system operated by adenosine A2A receptors to facilitate acetylcholine release in the rat hippocampus. Eur J Pharmacol. 2002;454(1):31–38
  • Cunha RA. Neuroprotection by adenosine in the brain: from A(1) receptor activation to A (2A) receptor blockade. Purinergic Signal. 2005;1(2):111–134.
  • Sebasti AM, Ribeiro JA. Adenosine A2 receptor-mediated excitatory actions on the nervous system. Prog Neurobiol. 1996;48:167–189.
  • Garcia N, Priego M, Obis T, et al. Adenosine A1 and A2A receptor-mediated modulation of acetylcholine release in the mice neuromuscular junction. Eur J Neurosci. 2013;38(2):2229–2241.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.