160
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

α1-Adrenergic receptors increase glucose oxidation under normal and ischemic conditions in adult mouse cardiomyocytes

& ORCID Icon
Pages 138-144 | Received 11 Feb 2020, Accepted 15 Feb 2020, Published online: 05 Aug 2020

References

  • Perez DM, Doze VA. Cardiac and neuroprotection regulated by α(1)-adrenergic receptor subtypes. J Recept Signal Transduct Res. 2011;31(2):98–110.
  • Galster AD, Clutter WE, Cryer PE, et al. Epinephrine plasma thresholds for lipolytic effects in man: measurements of fatty acid transport with [l-13C]palmitic acid. J Clin Invest. 1981;67(6):1729–1738.
  • Rizza RA, Cryer PE, Haymond MW, et al. Adrenergic mechanisms for the effects of epinephrine on glucose production and clearance in man. J Clin Invest. 1980;65(3):682–689.
  • Stark B, Keller U. Alpha 1-adrenergic stimulation of ketogenesis and fatty acid oxidation is associated with inhibition of lipogenesis in rat hepatocytes. Experientia. 1987;43(10):1104–1106.
  • Brindle NPJ, Ontko JA. Alpha-adrenergic suppression of very-low-density-lipoprotein triacylglycerol secretion by isolated rat hepatocytes. Biochem J. 1988;250(2):363–368.
  • Burcelin R, Uldry M, Foretz M, et al. Impaired glucose homeostasis in mice lacking the alpha1b-adrenergic receptor subtype. J Biol Chem. 2004;279(2):1108–1115.
  • Shi T, Papay RS, Perez DM. The role of α1-adrenergic receptors in regulating metabolism: increased glucose tolerance, leptin secretion and lipid oxidation. J Recept Signal Transduct Res. 2017;37(2):124–132.
  • Hutchinson DS, Bengtsson T. alpha1A-adrenoceptors activate glucose uptake in L6 muscle cells through a phospholipase C-, phosphatidylinositol-3 kinase-, and atypical protein kinase C-dependent pathway. Endocrinology. 2005;146(2):901–912.
  • Hutchinson DS, Bengtsson T. AMP-activated protein kinase activation by adrenoceptors in L6 skeletal muscle cells: mediation by alpha1-adrenoceptors causing glucose uptake . Diabetes. 2006;55(3):682–690.
  • Lafontan M, Barbe P, Galitzky J, et al. Adrenergic regulation of adipocyte metabolism. Hum Reprod. 1997;12(suppl 1):6–20.
  • Mauriège P, Pergola GD, Berlan M, et al. Human fat cell β-adrenergic receptors: β agonist-dependent lipolytic responses and characterization of β -adrenergic binding sites on human fat cell membranes with highly selective β1-antagonists. J Lipid Res. 1988;29:587–601.
  • Fagerholm V, Haaparanta M, Scheinin M. α2-Adrenoceptor regulation of blood glucose homeostasis. Basic Clin Pharmacol Toxicol. 2011;108(6):365–370.
  • Lafontan M, Berlan M. Fat cell α2-adrenoceptors: the regulation of fat cell function and lipolysis. Endocrine Rev. 1995;16(6):716–738.
  • Shi T, Papay RS, Perez DM. α1A-Adrenergic receptor prevents cardiac ischemic damage through PKCδ/GLUT1/4-mediated glucose uptake. J Recept Signal Transduct Res. 2016;36(3):261–270.
  • Clark CM. Jr. Characterization of glucose metabolism in the isolated rat heart during fetal and early neonatal development. Diabetes. 1973;22(1):41–49.
  • Lopaschuk GD, Ussher JR, Folmes CD, et al. Myocardial fatty acid metabolism in health and disease. Physiol Rev. 2010;90(1):207–258.
  • Ussher JR, Wang W, Gandhi M, et al. Stimulation of glucose oxidation protects against acute myocardial infarction and reperfusion injury. Cardiovasc Res. 2012;94(2):359–369.
  • Masoud WG, Ussher JR, Wang W, et al. Failing mouse hearts utilize energy inefficiently and benefit from improved coupling of glycolysis and glucose oxidation. Cardiovasc Res. 2014;101(1):30–38.
  • Manchester J, Kong X, Nerbonne J, et al. Glucose transport and phosphorylation in single cardiac myocytes: rate-limiting steps in glucose metabolism. Am J Physiol. 1994;266(3 Pt 1):E326–E333.
  • Wick AN, Drury DR, Nakada HI, et al. Localization of the primary metabolic block produced by 2-deoxyglucose. J Biol Chem. 1957;224(2):963–969.
  • Huynh FK, Green MF, Koves TR, et al. Measurement of fatty acid oxidation rates in animal tissues and cell lines. Meth Enzymol. 2014;542:391–405.
  • Kruszynska YT, Sherratt HS. Glucose kinetics during acute and chronic treatment of rats with 2[6(4-chloro-phenoxy)hexyl]oxirane-2-carboxylate, etomoxir. Biochem Pharmacol. 1987;36(22):3917–3921.
  • Xu M, Zhao YT, Song Y, et al. α1-adrenergic receptors activate AMP-activated protein kinase in rat hearts. Sheng Li Xue Bao. 2007;59:175–182.
  • Lin RZ, Chen J, Hu ZW, et al. Phosphorylation of the cAMP response element-binding protein and activation of transcription by alpha1 adrenergic receptors. J Biol Chem. 1998;273(45):30033–30038.
  • Bolukoglu H, Goodwin GW, Guthrie PH, et al. Metabolic fate of glucose in reversible low-flow ischemia of the isolated working rat heart. Am J Physiol. 1996;270(3 Pt 2):H817–H826.
  • Stanley WC, Hall JL, Stone CK, et al. Acute myocardial ischemia causes a transmural gradient in glucose extraction but not glucose uptake. Am J Physiol. 1992;262(1 Pt 2):H91–6.
  • Jaswal JS, Keung W, Wang W, et al. Targeting fatty acid and carbohydrate oxidation-a novel therapeutic intervention in the ischemic and failing heart. Biochim Biophys Acta. 2011;1813(7):1333–1350.
  • Schmidt-Schweda S, Holubarsch C. First clinical trial with etomoxir in patients with chronic congestive heart failure. Clin Sci (Lond). 2000;99(1):27–35.
  • Lee L, Campbell R, Scheuermann-Freestone M, et al. Metabolic modulation with perhexiline in chronic heart failure: a randomized, controlled trial of short-term use of a novel treatment. Circulation. 2005;112(21):3280–3288.
  • Kantor PF, Lucien A, Kozak R, et al. The antianginal drug trimetazidine shifts cardiac energy metabolism from fatty acid oxidation to glucose oxidation by inhibiting mitochondrial long-chain 3-ketoacyl coenzyme A thiolase. Circ Res. 2000;86(5):580–588.
  • Wargovich TJ, MacDonald RG, Hill JA, et al. Myocardial metabolic and hemodynamic effects of dichloroacetate in coronary artery disease. Am J Cardiol. 1988;61(1):65–70.
  • ALLHAT Collaborative Research Group. Major cardiovascular events in hypertensive patients randomized to doxazosin vs chlorthalidone: the antihypertensive and lipid-lowering treatment to prevent heart attack trial (ALLHAT). JAMA. 2000;283:1967–1975.
  • Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial Collaborative Research Group. Diuretic versus alpha-blocker as first-step antihypertensive therapy: final results from the Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial (ALLHAT). Hypertension. 2003;42:239–246.
  • O’Connell TD1, Swigart PM, Rodrigo MC, et al. α1-adrenergic receptors prevent a maladaptive cardiac response to pressure overload. J Clin Invest. 2006;116:1005–1015.
  • Rorabaugh BR, Ross SA, Gaivin RJ, et al. alpha1A- but not alpha1B-adrenergic receptors precondition the ischemic heart by a staurosporine-sensitive, chelerythrine-insensitive mechanism. Cardiovasc Res. 2005;65(2):436–445.
  • Du XJ, Gao XM, Kiriazis H, et al. Transgenic α1A-adrenergic activation limits post-infarct ventricular remodeling and dysfunction and improves survival. Cardiovasc Res. 2006;71(4):735–743.
  • Du XJ, Fang L, Gao XM, et al. Genetic enhancement of ventricular contractility protects against pressure-overload-induced cardiac dysfunction. J Mol Cell Cardiol. 2004;37(5):979–987.
  • Musselman DM, Ford AP, Gennevois DJ, et al. A randomized crossover study to evaluate Ro 115-1240, a selective alpha1A/1L-adrenoceptor partial agonist in women with stress urinary incontinence. BJU Int. 2004;93(1):78–83.
  • Blue DR, Daniels DV, Gever JR, et al. Pharmacological characteristics of Ro 115-1240, a selective alpha1A/1L-adrenoceptor partial agonist: a potential therapy for stress urinary incontinence. BJU Int. 2004;93(1):162–170.
  • Minneman KP, Theroux TL, Hollinger S, et al. Selectivity of agonists for cloned alpha1-adrenergic receptor subtypes. Mol Pharmacol. 1994;46(5):929–936.
  • Evans BA, Broxton N, Merlin J, et al. Quantification of functional selectivity at the human α(1A)-adrenoceptor. Mol Pharmacol. 2011;79(2):298–307.
  • da Silva Junior ED, Sato M, Merlin J, et al. Factors influencing biased agonism in recombinant cells expressing the human α1A -adrenoceptor. Br J Pharmacol. 2017;174(14):2318–2333.
  • Lee JH, Wen X, Cho H, et al. CREB/CRTC2 controls GLP-1-dependent regulation of glucose homeostasis. Faseb J. 2018;32(3):1566–1578.
  • Erion DM, Kotas ME, McGlashon J, et al. cAMP-responsive element-binding protein (CREB)-regulated transcription coactivator 2 (CRTC2) promotes glucagon clearance and hepatic amino acid catabolism to regulate glucose homeostasis. J Biol Chem. 2013;288(22):16167–16176.
  • Yang H, Yang L. Targeting cAMP/PKA pathway for glycemic control and type 2 diabetes therapy. J Mol Endocrinol. 2016;57(2):R93–R108.
  • Yao S, Yan H, Dong E-D, et al. Characterization of cAMP accumulation mediated by three alpha1-adrenoceptor subtypes in HEK293 cells. Acta Pharmacol Sin. 2003;6:549–554.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.