510
Views
10
CrossRef citations to date
0
Altmetric
Review Article

A strategic review on the involvement of receptors, transcription factors and hormones in acne pathogenesis

& ORCID Icon
Pages 105-116 | Received 23 Jan 2020, Accepted 27 Jul 2020, Published online: 13 Aug 2020

References

  • Abhishek B, Garima D. Development and characterization of a novel antiacne niosomal gel of rosmarinic acid. Drug Deliv. 2015;22:723–730.
  • Chakraborty D, Mandal SM, Chakraborty J, et al. Antimicrobial activity of leaf extract of Basilicum polystachon (L) Moench. Indian J Exp Biol. 2007;45:744–748.
  • Ogundare AO, Salawu SO. Antimicrobial activities of phenolic containing extract of some tropical vegetables. Afr J Pharm Pharacol. 2011;5:486–492.
  • Simonoska M, Dodov MG. Formulation and characterisation of topical liposome gel bearing lidocaine hcl. Bull Chem. 2005;24:59–65.
  • O'Neill AM, Gallo RL. Host-microbiome interactions and recent progress into understanding the biology of acne vulgaris. Microbiome. 2018;6:177.
  • Halvorsen JA, Stern RS, Dalgard F, et al. Suicidal ideation, mental health problems, and social impairment are increased in adolescents with acne: a population-based study. J Invest Dermatol. 2011;131:363–370.
  • Oh J, Byrd AL, Deming C, et al.; NISC Comparative Sequencing Program. Biogeography and individuality shape function in the human skin metagenome. Nature. 2014;514:59–64.
  • Linfante A, Allawh RM, Allen HB. The role of Propionibacterium acnes biofilm in acne vulgaris. J Clin Exp Dermatol Res. 2018;9:439.
  • Collier CN, Harper JC, Cantrell WC, et al. Нe prevalence of acne in adults 20 years and older. J Am Acad Dermatol. 2008;58:56–59.
  • Andrew A, James QR, Seemal RD, et al. Minocycline topical gel shows promise for the treatment of moderate-to-severe inflammatory acne vulgaris. J Clin Aesthet Dermatol. 2018;11:25–35.
  • Weiss JS. Acne: evolving concepts of pathogenesis need to guide therapeutic developments. J Drugs Dermatol. 2013;12:s66.
  • Thiboutot DM, Dreno B, Abanmi A, et al. Practical management of acne for clinicians: an international consensus from the Global Alliance to Improve Outcomes in Acne. J Am Acad Dermatol. 2018;78:S1–S23.
  • Strauss JS, Krowchuk DP, Leyden JJ, et al.; American Academy of Dermatology/American Academy of Dermatology Association. Guidelines of care for acne vulgaris management. J Am Acad Dermatol. 2007;56:651–663.
  • Magin P, Adams J, Heading G, et al. Psychological sequelae of acne vulgaris: results of a qualitative study. Can Fam Physician. 2006;52:978–979.
  • Jappe U. Pathological mechanisms of acne with special emphasis on Propionibacterium acnes and related therapy. Acta Derm Venereol. 2003;83:241–248.
  • Fleming A. On the etiology of acne vulgaris and its treatment by vaccines. Lancet. 1909;173:1035–1038.
  • Strauss JS, Kligman AM. The pathologic dynamics of acne vulgaris. Arch Dermatol. 1960;82:779–791.
  • Leeming JP, Holland KT, Cuncliffe WJ. The microbial colonization of inflamed acne vulgaris lesions. Br J Dermatol. 1988;118:203–208.
  • Dessinioti C, Katsambas AD. The role of Propionibacterium acnes in acne pathogenesis: facts and controversies. Clin Dermatol. 2010;28:2–7.
  • Li X, He C, Chen Z, et al. A review of the role of sebum in the mechanism of acne pathogenesis. J Cosmet Dermatol. 2017;16:168–173.
  • Evgenia M, Ganceviciene r, Christos Z. An update on the role of the sebaceous gland in the pathogenesis of acne. Dermatoendocrinol. 2011;3:41–49.
  • Zouboulis CC, Schagen S, Alestas T. The sebocyte culture: a model to study the pathophysiology of the sebaceous gland in sebostasis, seborrhoea and acne. Arch Dermatol Res. 2008;300:397–413.
  • Bakry OA, El Shazly RM, El Farargy SM, et al. Role of hormones and blood lipids in the pathogenesis of acne vulgaris in non-obese, non-hirsute females. Indian Dermatol Online J. 2014;5:9–16.
  • Choi CW, Choi JW, Park KC, et al. Facial sebum affects the development of acne, especially the distribution of inflammatory acne. J Eur Acad Dermatol Venereol. 2013;27:301–306.
  • Marisa T, Maria G, Rebecca P. Pathways to inflammation: acne pathophysiology. Eur J Dermatol. 2011;21:323–333.
  • Kurokawa I, Danby FW, Ju Q, et al. New developments in our understanding of acne pathogenesis and treatment. Exp Dermatol. 2009;18:821–822.
  • Nettis E, Colanardi MC, Ferrannini A, et al. Antihistamines as important tools for regulating inflammation. CMCAIAA. 2005;4:81–89.
  • Pelle E, McCarthy J, Seltmann H, et al. Identification of Histamine Receptors and Reduction of Squalene Levels by an Antihistamine in Sebocytes. J Invest Dermatol. 2008;128:1280–1285.
  • Smith TM, Cong Z, Gilliland KL, et al. Insulin-like growth factor-1 induces lipid production in human SEB-1 sebocytes via sterol response element-binding protein-1. J Invest Dermatol. 2006;126:1226–1232.
  • Maruko T, Nakahara T, Sakamoto K, et al. Involvement of the βγ subunits of G proteins in the cAMP response induced by stimulation of the histamine H1 receptor. Naunyn Schmiedebergs Arch Pharmacol. 2005;372:153–159.
  • Bastien J, Rochette-Egly C. Nuclear retinoid receptors and the transcription of retinoid-target genes. Gene. 2004;328:1–16.
  • Duong V, Rochette-Egly C. The molecular physiology of nuclear retinoic acid receptors. From health to disease. Biochim Biophys Acta. 2011;1812:1023–1031.
  • de The H, Marchio A, Tiollais P, et al. Differential expression and ligand regulation of the retinoic acid receptor alpha and beta genes. Embo J. 1989;8:429–433.
  • Toulouse A, Morin J, Pelletier M, et al. Structure of the human retinoic acid receptor beta 1 gene. Biochim Biophys Acta. 1996;1309:1–4.
  • Alvarez S, Germain P, Alvarez R, et al. Structure, function and modulation of retinoic acid receptor beta, a tumor suppressor. Int J Biochem Cell Biol. 2007;39:1406–1415.
  • Sun SY, Lotan R. Retinoids and their receptors in cancer development and chemoprevention. Critical Rev Oncology/Hematology. 2002;41:41–55.
  • Alvarez S, Bourguet W, Gronemeyer H, et al. Retinoic acid receptor modulators: a perspective on recent advances and promises. Expert Opin Ther Pat. 2011;21:55–63.
  • Chapellier M, Mark N, Messaddeq C, et al. Physiological and retinoid-induced proliferations of epidermis basal keratinocytes are differently controlled. Embo J. 2002;21:3402–3413.
  • van de Kerkhof PC. Update on retinoid therapy of psoriasis in: an update on the use of retinoids in dermatology. Dermatol Ther. 2006;19:252–263.
  • Czernielewski J, Michel S, Bouclier M, et al. Adapalene biochemistry and the evolution of a new topical retinoid for treatment of acne. J Eur Acad Dermatol Venereol. 2001;15:5–12.
  • Beckenbach L, Baron JM, Merk HF, et al. Retinoid treatment of skin diseases. Eur J Dermatol. 2015;25:384–391.
  • Yeh L, Bonati LM, Silverberg NB. Topical retinoids for acne. Semin Cutan Med Surg. 2016;35:50–56.
  • Bodo CM, Gerd S, Christos CZ. Anti-Acne Agents Attenuate FGFR2 Signal Transduction in Acne. J Invest Dermatol. 2009;129:1868–1877.
  • Eswarakumar VP, Lax I, Schlessinger J. Cellular signaling by fibroblast growth factor receptors. Cytokine Growth Factor Rev. 2005;16:139–149.
  • Grose R, Fantl V, Werner S, et al. The role of fibroblast growth factor receptor 2b in skin homeostasis and cancer development. Embo J. 2007;26:1268–1278.
  • De Giorgi V, Sestini S, Massi D, et al. Keratinocyte growth factor receptors. Dermatol Clin. 2007;25:477–485.
  • De Moerlooze L, Spencer-Dene B, Revest JM, et al. An important role for the IIIb isoform of fibroblast growth factor receptor 2 (FGFR2) in mesenchymal-epithelial signalling during mouse organogenesis. Development. 2000;127:483–492.
  • Ong SH, Guy GR, Hadari YR, et al. FRS2 proteins recruit intracellular signaling pathways by binding to diverse targets on fibroblast growth factor and nerve growth factor receptors. Mol Cell Biol. 2000;20:979–989.
  • Wong A, Lamothe B, Lee A, et al. FRS2 alpha attenuates FGF receptor signaling by Grb2-mediated recruitment of the ubiquitin ligase Cbl. Proc Natl Acad Sci USA. 2002;99:6684–6689.
  • Belleudi F, Leone L, Nobili V, et al. Keratinocyte growth factor receptor ligands target the receptor to different intracellular pathways. Traffic. 2007;8:1854–1872.
  • Ahmed Z, Schuller AC, Suhling K, et al. Extracellular point mutations in FGFR2 elicit unexpected changes in intracellular signalling. Biochem J. 2008;413:37–49.
  • Melnik B, Schmitz G. FGFR2 signaling and the pathogenesis of acne. J Dtsch Dermatol Ges. 2008;6:721–728.
  • Ding W, Shi W, Bellusci S, et al. Sprouty2 downregulation plays a pivotal role in mediating crosstalk between TGF-beta1 signaling and EGF as well as FGF receptor tyrosine kinase-ERK pathways in mesenchymal cells. J Cell Physiol. 2007;212:796–806.
  • Whitney V, SadeghA BB. The expression of toll-like receptors in dermatological diseases and the therapeutic effect of current and newer topical toll-like receptor modulators. J Clin Aesthet Dermatol. 2010;3:20–29.
  • Lai Y, Gallo RL. Toll-like receptors in skin infections and inflammatory diseases. Infect Disord Drug Targets. 2008;8:144–155.
  • Kawai T, Akira S. Signaling to NF-kappaB by Toll-like receptors. Trends Mol Med. 2007;13:460–469.
  • Miller LS. Toll-like receptors in skin. Adv Dermatol. 2008;24:71–87.
  • Sandor F, Buc M. Toll-like receptors. I. Structure, function and their ligands. Folia Biol (Praha). 2005;51:148–157.
  • Kang SS, Kauls LS, Gaspari AA. Toll-like receptors: applications to dermatologic disease. J Am Acad Dermatol. 2006;54:951–983.
  • McInturff JE, Modlin RL, Kim J. The role of toll-like receptors in the pathogenesis and treatment of dermatological disease. J Invest Dermatol. 2005;125:1–8.
  • McInturff JE, Kim J. The role of toll-like receptors in the pathophysiology of acne. Semin Cutan Med Surg. 2005;24:73–78.
  • Kim J, Ochoa MT, Krutzik SR, et al. Activation of toll-like receptor 2 in acne triggers inflammatory cytokine responses. J Immunol. 2002;169:1535–1541.
  • Marta GM, Coulson R, Rubinchik E. Anti-inflammatory activity of cationic peptides: application to the treatment of acne vulgaris. FEMS Microbiol Lett. 2006;257:1–6.
  • Melnik BC. Acneigenic stimuli converge in phosphoinositol-3 kinase/Akt/FoxO1 signal transduction. J Clin Exp Dermatol Res. 2010;1:101.
  • Norman RJ, Dewailly D, Legro RS, et al. Polycystic ovary syndrome. Lancet. 2007;370:685–697.
  • Corbould A. Insulin resistance in skeletal muscle and adipose tissue in polycystic ovary syndrome: are the molecular mechanisms distinct from type 2 diabetes? Panminerva Med. 2008;50:279–294.
  • Vigouroux C. What have we learned form monogenic forms of severe insulin resistance associated with PCOS/HAIRAN? Ann Endocrinol (Paris). 2010;71:222–224.
  • Thielitz A, Reinhold D, Vetter R, et al. Inhibitors of dipeptidyl peptidase IV and aminopeptidase N target major pathogenetic steps in acne initiation. J Invest Dermatol. 2007;127:1042–1051.
  • Jeremy AH, Holland DB, Roberts SG, et al. Inflammatory events are involved in acne lesion initiation. J Invest Dermatol. 2003;121:20–27.
  • Becker T, Loch G, Beyer M, et al. FOXO-dependent regulation of innate immune homeostasis. Nature. 2010;463:369–373.
  • Peng SL. Foxo in the immune system. Oncogene. 2008;27:2337–2344.
  • Ouyang W, Beckett O, Flavell RA, et al. An essential role of the Forkhead-box transcription factor Foxo1 in control of T cell homeostasis and tolerance. Immunity. 2009;30:358–371.
  • Ansorge S, Bank U, Heimburg A, et al. Recent insights into the role of dipeptidyl aminopeptidase IV (DPIV) and aminopeptidase N (APN) families in immune functions. Clin Chem Lab Med. 2009;47:253–261.
  • Böhm M. Neuroendocrine regulators: novel trends in sebaceous gland research with future perspectives for the treatment of acne and related disorders. Dermatoendocrinol. 2009;1:136–140.
  • Ganceviciene R, Böhm M, Fimmel S, et al. The role of neuropeptides in the multifactorial pathogenesis of acne vulgaris. Dermatoendocrinol. 2009;1:170–176.
  • Krause K, Schnitger A, Fimmel S, et al. Corticotropin-releasing hormone skin signaling is receptor-mediated and is predominant in the sebaceous glands. Horm Metab Res. 2007;39:166–170.
  • Chandras C, Koutmani Y, Kokkotou E, et al. Activation of phosphatidylinositol 3-kinase/protein kinase B by corticotropin-releasing factor in human monocytes. Endocrinology. 2009;150:4606–4614.
  • Jiann-Jyh L, Philip C, Kuo-Pao L, et al. The role of androgen and androgen receptor in the skin related disorders. Arch Dermatol Res. 2012;304:499–510.
  • Chen W, Thiboutot D, Zouboulis CC. Cutaneous androgen metabolism: basic research and clinical perspectives. J Invest Dermatol. 2002;119:992–1007.
  • Rohini P, Shipra P, Ashish KM. Epidermal androgen receptors in acne vulgaris patients before and following oral isotretinoin. J Anat Soc India. 2015;64:42–47.
  • Zouboulis CC, Degitz K. Androgen action on human skin–from basic research to clinical significance. Exp Dermatol. 2004;13:5–10.
  • Choudhry R, Hodgins MB, Brinkmann AO, et al. Localization of androgen receptors in human skin by immunohistochemistry: implications for the hormonal regulation of hair growth, sebaceous glands and sweat glands. J Endocrinol. 1992;133:467–475.
  • Fritsch M, Orfanos CE, Zouboulis CC. Sebocytes are the key regulators of androgen homeostasis in human skin. J Invest Dermatol. 2001;116:793–800.
  • Uemura M, Tamura K, Chung S, et al. Novel 5 alpha-steroid reductase (SRD5A3, type-3) is overexpressed in hormone-refractory prostate cancer. Cancer Sci. 2008;99:81–86.
  • Cantagrel V, Lefeber DJ, Guan Z, et al. SRD5A3 is required for converting polyprenol to dolichol and is mutated in a congenital glycosylation disorder. Cell. 2010;142:203–217.
  • Seiffert K, Seltmann H, Fritsch M, et al. Inhibition of 5alpha-reductase activity in SZ95 sebocytes and HaCaT keratinocytes in vitro. Horm Metab Res. 2007;39:141–148.
  • Gilliver SC, Ashworth JJ, Mills SJ, et al. Androgens modulate the inflammatory response during acute wound healing. J Cell Sci. 2006;119:722–732.
  • van de Wijngaart DJ, Dubbink HJ, van Royen ME, et al. Androgen receptor coregulators: recruitment via the coactivator binding groove. Mol Cell Endocrinol. 2012;352:57–69.
  • Melnik BC. Role of FGFR2-signaling in the pathogenesis of acne. Dermatoendocrinol. 2009;1:141–156.
  • Melnik BC. FoxO1 – the key for the pathogenesis and therapy of acne? J Dtsch Dermatol Ges. 2010;8:105–114.
  • Ben-Amitai D, Laron Z. Effect of insulin-like growth factor-1 deficiency or administration on the occurrence of acne. J Eur Acad Dermatol Venereol. 2011;25:950–954.
  • Smith TM, Gilliland K, Clawson GA, et al. IGF-1 induces SREBP-1 expression and lipogenesis in SEB-1 sebocytes via activation of the phosphoinositide 3-kinase/Akt pathway. J Invest Dermatol. 2008;128:1286–1293.
  • Vora S, Ovhal A, Jerajani H, et al. Correlation of facial sebum to serum insulin-like growth factor-1 in patients with acne. Br J Dermatol. 2008;159:990–991.
  • Hyojin K, Moon SY, Sohn MY, et al. Insulin-like growth factor-1 increases the expression of inflammatory biomarkers and sebum production in cultured sebocytes. Ann Dermatol. 2017;29:20–25.
  • Melnik BC. Isotretinoin and FoxO1: a scientific hypothesis. Dermatoendocrinol. 2011;3:141–165.
  • Lai JJ, Lai KP, Chuang KH, et al. Monocyte/macrophage androgen receptor suppresses cutaneous wound healing in mice by enhancing local TNF-alpha expression. J Clin Invest. 2009;119:3739–3751.
  • Chuang KH, Altuwaijri S, Li G, et al. Neutropenia with impaired host defense against microbial infection in mice lacking androgen receptor. J Exp Med. 2009;206:1181–1199.
  • Cyrulnik AA, Viola KV, Gewirtzman AJ, et al. High-dose isotretinoin in acne vulgaris: improved treatment outcomes and quality of life. Int J Dermatol. 2012;51:1123–1130.
  • Wilson CM, McPhaul MJ. A and B forms of the androgen receptor are expressed in a variety of human tissues. Mol Cell Endrocrinol. 1996;120:51–57.
  • Iwamura M, Abrahamsson P, Benning CM, et al. Androgen receptor immunostaining and its tissue distribution in formalin-fixed, paraffin-embedded sections after microwave treatment. J Histochem Cytochem. 1994;42:783–788.
  • Bakry OA, Farargy SM, Din NN, et al. Immunohistochemical expression of cyclo-oxygenase 2 and liver X receptor-α in acne vulgaris. J Clin Diagn Res. 2017;11:WC01–WC07.
  • Gupta DS, Kaul D, Kanwar AJ, et al. Psoriasis: crucial role of LXR-alpha RNomics. Genes Immun. 2010;11:37–44.
  • Schmuth M, Jiang YJ, Dubrac S, et al. Thematic review series: skin lipids. Peroxisome proliferator-activated receptors and liver X receptors in epidermal biology . J Lipid Res. 2008;49:499–509.
  • Alberti S, Steffensen KR, Gustafsson JA. Structural characterisation of the mouse nuclear oxysterol receptor genes LXRalpha and LXRbeta. Gene. 2000;243:93–103.
  • Hong I, Lee MH, Zouboulis CC, et al. LXRalpha enhances lipid synthesis in SZ95 sebocytes. J Invest Dermatol. 2008;128:1266–1272.
  • Russell LE, Harrison WJ, Bahta AW, et al. Characterization of liver X receptor expression and function in human skin and the pilosebaceous unit. Exp Dermatol. 2007;16:844–852.
  • Lu TT, Repa JJ, Mangelsdorf DJ. Orphan nuclear receptors as eLiXiRs and FiXeRs of sterol metabolism. J Biol Chem. 2001;276:37735–37738.
  • Bohm M, Luger TA, Tobin DJ, et al. Melanocortin receptor ligands: new horizons for skin biology and clinical dermatology. J Invest Dermatol. 2006;126:1966–1975.
  • Slominski A, Wortsman J, Plonka PM, et al. Hair follicle pigmentation. J Invest Dermatol. 2005;124:13–21.
  • Brzoska T, Luger TA, Maaser C, et al. Alpha-melanocyte-stimulating hormone and related tripeptides: biochemistry, antiinflammatory and protective effects in vitro and in vivo, and future perspectives for the treatment of immune-mediated inflammatory diseases . Endocr Rev. 2008;29:581–602.
  • Zhang L, Anthonavage M, Eisinger M, et al. Melanocortin-5 receptor: a marker of human sebocyte differentiation. Peptides. 2006;27:413–420.
  • Moustafa M, Szabo M, Ghanem GE, et al. Inhibition of tumor necrosis factor-alpha stimulated NFkappaB/p65 in human keratinocytes by alpha-melanocyte stimulating hormone and adrenocorticotropic hormone peptides. J Invest Dermatol. 2002;119:1244–1253.
  • Spencer JD, Schallreuter KU. Regulation of pigmentation in human epidermal melanocytes by functional high-affinity beta-melanocyte-stimulating hormone/melanocortin-4 receptor signaling. Endocrinology. 2009;150:1250–1258.
  • Bohm M, Luger TA. Melanocortins in fibroblast biology–current update and future perspective for dermatology. Exp Dermatol. 2004;13:16–21.
  • Rosenfield RL, Wu PP, Ciletti N. Sebaceous epithelial cell differentiation requires cyclic adenosine monophosphate generation. In Vitro Cell Dev Biol Anim. 2002;38:54–57.
  • Huang Q, Anthonavage M, Eisinger M, et al. The role of α-MSH in human sebaceous lipogenesis. J Invest Dermatol. 2002;119:275.
  • Zhang L, Li WH, Anthonavage M, et al. Melanocortin-5 receptor and sebogenesis. Eur J Pharmacol. 2011;660:202–206.
  • Ferre P. The biology of peroxisome proliferator-activated receptors: relationship with lipid metabolism and insulin sensitivity. Diabetes. 2004;53:S43–S50.
  • Knouff C, Auwerx J. Peroxisome proliferator-activated receptor-gamma calls for activation in moderation: lessons from genetics and pharmacology. Endocr Rev. 2004;25:899–918.
  • Desvergne B, Michalik L, Wahli W. Be fit or be sick: peroxisome proliferator-activated receptors are down the road. Mol Endocrinol. 2004;18:1321–1332.
  • van Raalte DH, Li M, Pritchard PH, et al. Peroxisome proliferator-activated receptor (PPAR)-alpha: a pharmacological target with a promising future. Pharm Res. 2004;21:1531–1538.
  • Fazio S, Linton MF. The role of fibrates in managing hyperlipidemia: mechanisms of action and clinical efficacy. Curr Atheroscler Rep. 2004;6:148–157.
  • Schmuth M, Haqq C, Cairns W, et al. Peroxisome proliferator-activated receptor (PPAR)-beta/delta stimulates differentiation and lipid accumulation in keratinocytes. J Invest Dermatol. 2004;122:971–983.
  • Mao-Qiang M, Fowler A, Schmuth M, et al. Peroxisome-proliferator-activated receptor (PPAR)-gamma activation stimulates keratinocyte differentiation . J Invest Dermatol. 2004;123:305–312.
  • Chen W, Yang C, Sheu H, et al. Expression of peroxisome proliferator-activated receptor and CCAAT/enhancer binding protein transcription factors in cultured human sebocytes. J Invest Dermatol. 2003;121:441–447.
  • Downie MM, Sanders D, Maier L, et al. Peroxisome proliferator-activated receptor and farnesoid X receptor ligands differentially regulate sebaceous differentiation in human sebaceous gland organ cultures in vitro. Br J Dermatol. 2004;151:766–775.
  • Alestas T, Ganceviciene R, Fimmel S, et al. Enzymes involved in the biosynthesis of leukotriene B4 and prostaglandin E2 are active in sebaceous glands. J Mol Med. 2006;84:75–87.
  • Schuster M, Zouboulis CC, Ochsendorf F, et al. Peroxisome proliferator-activated receptor activators protect sebocytes from apoptosis: a new treatment modality for acne? Br J Dermatol. 2011;164:182–186.
  • Trivedi NR1, Cong Z, Nelson AM, et al. Peroxisome proliferator-activated receptors increase human sebum production. J Invest Dermatol. 2006;126:2002–2009.
  • Kim HK, Yeo IK, Kim BJ, et al. Topical epidermal growth factor for the improvement of acne lesions: a randomized, double-blinded, placebo-controlled, split-face trial. Int J Dermatol. 2014;53:1031–1036.
  • Wollenberg A, Kroth J, Hauschild A, et al. [Cutaneous side effects of EGFR inhibitors-appearance and management]. Dtsch Med Wochenschr. 2010;135:149–154.
  • Ciardiello F, Tortora G. EGFR antagonists in cancer treatment. N Engl J Med. 2008;358:1160–1174.
  • Harari M, Allen GW, Bonner JA. Biology of interactions: antiepidermal growth factor receptor agents. J Clin Oncol. 2007;25:4057–4065.
  • Pastore S, Mascia F. Novel acquisitions on the immunoprotective roles of the EGF receptor in the skin. Expert Rev Dermatol. 2008;3:525–527.
  • Koff JL, Shao MX, Ueki IF, et al. Multiple TLRs activate EGFR via a signaling cascade to produce innate immune responses in airway epithelium. Am J Physiol Lung Cell Mol Physiol. 2008;294:1068–1075.
  • Grange PA, Raingeaud J, Calvez V, et al. Nicotinamide inhibits Propionibacterium acnes-induced IL-8 production in keratinocytes through the NF-kappaB and MAPK pathways. J Dermatol Sci. 2009;56:106–112.
  • Dahlhoff M, de Angelis MH, Wolf E, et al. Ligand-independent epidermal growth factor receptor hyperactivation increases sebaceous gland size and sebum secretion in mice. Exp Dermatol. 2013;22:667–669.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.