123
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Analysis of plant-derived phytochemicals as anti-cancer agents targeting cyclin dependent kinase-2, human topoisomerase IIa and vascular endothelial growth factor receptor-2

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 217-233 | Received 09 Mar 2020, Accepted 01 Aug 2020, Published online: 13 Aug 2020

References

  • WHO. World health statistics 2006. 2006. Available from: http://www.who.int/
  • Da Rocha AB, Lopes RM, Schwartsmann G. Natural products in anticancer therapy. Curr Opin Pharmacol. 2001;1:364–369.
  • Cragg GM, Newman DJ. Plants as a source of anti-cancer agents. J Ethnopharmacol. 2005;100:72–79.
  • Pan L, Chai H, Kinghorn AD. The continuing search for antitumor agents from higher plants. Phytochem Lett. 2010;3:1–8.
  • Sarkar B, Ullah M, Islam A, et al. Anticancer potential of medicinal plants from Bangladesh and their effective compounds against cancer. J Pharmacogn Phytochem. 2019;8:827–833.
  • Pan L, Chai HB, Kinghorn AD. Discovery of new anticancer agents from higher plants. Front Biosci (Schol Ed). 2012;4:4, 142–156.
  • Fischbach MA, Walsh CT. Directing biosynthesis. Science. 2006;314:603–605.
  • Fabricant DS, Farnsworth NR. The value of plants used in traditional medicine for drug discovery. Environ Health Persp. 2001;109:69–75.
  • Tan G, Gyllenhaal C, Soejarto DD. Biodiversity as a source of anticancer drugs. Curr Drug Targets. 2006;7:265–277.
  • Saklani A, Kutty SK. Plant-derived compounds in clinical trials. Drug Discov Today. 2008;13:161–171.
  • The ASCO Post. EHA 2018: alvocidib in patients with relapsed or refractory MCL-1–dependent AML. 2018 [accessed 2020 Mar 3]. Avaiable from: https://ascopost.com/News/58966
  • Mayo Clinic. Lenvatinib (oral route). [accessed 2020 Mar 3]. Available from: https://www.mayoclinic.org/drugs-supplements/lenvatinib-oral-route/side-effects/drg-20137764?p=1
  • drugs.com. Daunorubicin side effects. [accessed 2020 Mar 3]. Available from: https://www.drugs.com/sfx/daunorubicin-side-effects.html
  • Karimi A, Majlesi M, Rafieian-Kopaei M. Herbal versus synthetic drugs; beliefs and facts. J Nephropharmacol. 2015;4:27–30.
  • Qi F, Yan Q, Zheng Z, et al. Geraniol and geranyl acetate induce potent anticancer effects in colon cancer Colo-205 cells by inducing apoptosis, DNA damage and cell cycle arrest. J Buon. 2018;23:346–352.
  • Duncan RE, Lau D, El-Sohemy A, et al. Geraniol and β-ionone inhibit proliferation, cell cycle progression, and cyclin-dependent kinase 2 activity in MCF-7 breast cancer cells independent of effects on HMG-CoA reductase activity. Biochem Pharmacol. 2004;68:1739–1747.
  • Amin A, Gali-Muhtasib H, Ocker M, et al. Overview of major classes of plant-derived anticancer drugs. Int J Biomed Sci. 2009;5:1–11.
  • Ramirez-Mares MV, Chandra S, de-Mejia EG. In vitro chemopreventive activity of Camellia sinensis, Ilex paraguariensis and Ardisia compressa tea extracts and selected polyphenols. Mutat Res. 2004;554:53–65.
  • Ponnusamy K, Petchiammal C, Mohankumar R, et al. In vitro antifungal activity of indirubin isolated from a South Indian ethnomedicinal plant Wrightia tinctoria R. J Ethnopharmacol. 2010;132:349–354.
  • Jautelat R, Brumby T, Schäfer M, et al. From the insoluble dye indirubin towards highly active, soluble CDK2‐inhibitors. Chembiochem. 2005;6:531–540.
  • Hoessel R, Leclerc S, Endicott JA, et al. Indirubin, the active constituent of a Chinese antileukaemia medicine, inhibits cyclin-dependent kinases. Nat Cell Biol. 1999;1:60–67.
  • Jain SK, Bharate SB, Vishwakarma RA. Cyclin-dependent kinase inhibition by flavoalkaloids. Mini Rev Med Chem. 2012;12:632–649.
  • Lu X, Jung J, Cho I, et al. Fisetin inhibits the activities of cyclin-dependent kinases leading to cell cycle arrest in HT-29 human colon cancer cells. J Nutr. 2005;135:2884–2890.
  • Rengarajan T, Yaacob NS. The flavonoid fisetin as an anticancer agent targeting the growth signaling pathways. Eur J Pharmacol. 2016;789:8–16.
  • Shukla S, Gupta S. Apigenin-induced cell cycle arrest is mediated by modulation of MAPK, PI3K-Akt, and loss of cyclin D1 associated retinoblastoma dephosphorylation in human prostate cancer cells. Cell Cycle. 2007;6:1102–1114.
  • Lin Y, Shi R, Wang X, et al. Luteolin, a flavonoid with potential for cancer prevention and therapy. CCDT. 2008;8:634–646.
  • Saewan N, Koysomboon S, Chantrapromma K. Anti-tyrosinase and anti-cancer activities of flavonoids from Blumea balsamifera DC. J Med Plants Res. 2011;5:1018–1025.
  • Cho HJ, Park JHY. Kaempferol induces cell cycle arrest in HT-29 human colon cancer cells. J Cancer Prev. 2013;18:257–263.
  • Yang J, Xiao P, Sun J, et al. Anticancer effects of kaempferol in A375 human malignant melanoma cells are mediated via induction of apoptosis, cell cycle arrest, inhibition of cell migration and downregulation of m-TOR/PI3K/AKT pathway. J Buon. 2018;23:218–223.
  • Weng MS, Ho YS, Lin JK. Chrysin induces G1 phase cell cycle arrest in C6 glioma cells through inducing p21Waf1/Cip1 expression: involvement of p38 mitogen-activated protein kinase. Biochem Pharmacol. 2005;69:1815–1827.
  • Samarghandian S, Nezhad M, Mohammadi G. Role of caspases, Bax and Bcl-2 in chrysin-induced apoptosis in the A549 human lung adenocarcinoma epithelial cells. ACAMC. 2014;14:901–909.
  • Khan W, Ashfaq U, Aslam A, et al. Anticancer screening of medicinal plant phytochemicals against cyclin-dependent kinase-2 (CDK2): an in-silico approach. Adv Life Sci. 2017;4:113–119.
  • Choi YH, Lee WH, Park KY, et al. p53‐independent induction of p21 (WAF1/CIP1), reduction of cyclin B1 and G2/M arrest by the isoflavone genistein in human prostate carcinoma cells. Jpn J Cancer Res. 2000;91:164–173.
  • Sarkar FH, Adsule S, Padhye S, et al. The role of genistein and synthetic derivatives of isoflavone in cancer prevention and therapy. Mini Rev Med Chem. 2006;6:401–407.
  • Grynberg NF, Carvalho MD, Velandia JR, et al. DNA topoisomerase inhibitors: biflavonoids from Ouratea species. Braz J Med Biol Res. 2002;35:819–822.
  • Kirby G, Paine C, Warhurst A, et al. In vitro and in vivo antimalarial activity of cryptolepine, a plant‐derived indoloquinoline. Phytother Res. 1995;9:359–363.
  • Bonjean K, De-Pauw-Gillet M, Defresne C, et al. The DNA intercalating alkaloid cryptolepine interferes with topoisomerase II and inhibits primarily DNA synthesis in B16 melanoma cells. Biochemistry. 1998;37:5136–5146.
  • Bailly C, Laine W, Baldeyrou B, et al. DNA intercalation, topoisomerase II inhibition and cytotoxic activity of the plant alkaloid neocryptolepine. Anticancer Drug Des. 2000;15:191–201.
  • Dassonneville L, Lansiaux A, Wattelet A, et al. Cytotoxicity and cell cycle effects of the plant alkaloids cryptolepine and neocryptolepine: relation to drug-induced apoptosis. Eur J Pharmacol. 2000;409:9–18.
  • Sun NJ, Woo SH, Cassady JM, et al. DNA polymerase and topoisomerase II inhibitors from Psoralea corylifolia. J Nat Prod. 1998;61:362–366.
  • Prescott TA, Sadler IH, Kiapranis R, et al. Lunacridine from Lunasia amara is a DNA intercalating topoisomerase II inhibitor. J Ethnopharmacol. 2007;109:289–294.
  • Jo JY, Gonzalez-de-Mejia E, Lila MA. Catalytic inhibition of human DNA topoisomerase II by interactions of grape cell culture polyphenols. J Agric Food Chem. 2006;54:2083–2087.
  • Vissac-Sabatier C, Bignon YJ, Bernard-Gallon DJ. Effects of the phytoestrogens genistein and daidzein on BRCA2 tumor suppressor gene expression in breast cell lines. Nutr Cancer. 2003;45:247–255.
  • Sugimoto Y, Tsukahara S, Oh-Hara T, et al. Elevated expression of DNA topoisomerase II in camptothecin-resistant human tumor cell lines. Cancer Res. 1990;50:7962–7965.
  • Zheng MS, Lee YK, Li Y, et al. Inhibition of DNA topoisomerases I and II and cytotoxicity of compounds from Ulmus davidiana var. japonica. Arch Pharm Res. 2010;33:1307–1315.
  • Lu HR, Meng LH, Huang M, et al. DNA damage, c-myc suppression and apoptosis induced by the novel topoisomerase II inhibitor, salvicine, in human breast cancer MCF-7 cells. Cancer Chemother Pharmacol. 2005;55:286–294.
  • Zhang Y, Wang L, Chen Y, et al. Anti-angiogenic activity of salvicine. Pharm Boil. 2013;51:1061–1065.
  • Lee YK, Seo CS, Lee CS, et al. K. Inhibition of DNA topoisomerases I and II and cytotoxicity by lignans from Saururus chinensis. Arch Pharm Res. 2009;32:1409–1415.
  • Maas JL, Galletta GJ, Stoner GD. Ellagic acid, an anticarcinogen in fruits, especially in strawberries: a review. HortSci. 1991;26:10–14.
  • Labrecque L, Lamy S, Chapus A, et al. Combined inhibition of PDGF and VEGF receptors by ellagic acid, a dietary-derived phenolic compound. Carcinogenesis. 2005;26:821–826.
  • Tong Q, Qing Y, Wu Y, et al. Dioscin inhibits colon tumor growth and tumor angiogenesis through regulating VEGFR2 and AKT/MAPK signaling pathways. Toxicol Appl Pharm. 2014;281:166–173.
  • Cho J, Choi H, Lee J, et al. The antifungal activity and membrane-disruptive action of dioscin extracted from Dioscorea nipponica. Biochim Biophys Acta. 2013;1828:1153–1158.
  • Xu HY, Pan YM, Chen ZW, et al. 12-Deoxyphorbol 13-palmitate inhibit VEGF-induced angiogenesis via suppression of VEGFR-2-signaling pathway. J Ethnopharmacol. 2013;146:724–733.
  • Xu HY, Chen ZW, Li H, et al. 12-Deoxyphorbol 13-palmitate mediated cell growth inhibition, G2-M cell cycle arrest and apoptosis in BGC823 cells. Eur J Pharmacol. 2013;700:13–22.
  • Cerezo A, Hornedo-Ortega R, Álvarez-Fernández M, et al. Inhibition of VEGF-induced VEGFR-2 activation and HUVEC migration by melatonin and other bioactive indolic compounds. Nutrients. 2017;9:249.
  • Plaimee P, Weerapreeyakul N, Barusrux S, et al. Melatonin potentiates cisplatin‐induced apoptosis and cell cycle arrest in human lung adenocarcinoma cells. Cell Prolif. 2015;48:67–77.
  • Mu X, Shi W, Sun L, et al. Pristimerin, a triterpenoid, inhibits tumor angiogenesis by targeting VEGFR2 activation. Molecules. 2012;17:6854–6868.
  • Hayashi D, Shirai T, Terauchi R, et al. Pristimerin inhibits the proliferation of HT1080 fibrosarcoma cells by inducing apoptosis. Oncol Lett. 2020;19:2963–2970.
  • Saraswati S, Kumar S, Alhaider AA. α-Santalol inhibits the angiogenesis and growth of human prostate tumor growth by targeting vascular endothelial growth factor receptor 2-mediated AKT/mTOR/P70S6K signaling pathway. Mol Cancer. 2013;12:147.
  • Lai L, Liu J, Zhai D, et al. Plumbagin inhibits tumour angiogenesis and tumour growth through the Ras signalling pathway following activation of the VEGF receptor‐2. Brit J Pharmacol. 2012;165:1084–1096.
  • Jung MH, Lee SH, Ahn EM, et al. Decursin and decursinol angelate inhibit VEGF-induced angiogenesis via suppression of the VEGFR-2-signaling pathway. Carcinogenesis. 2009;30:655–661.
  • Jung SY, Choi JH, Kwon SM, et al. Decursin inhibits vasculogenesis in early tumor progression by suppression of endothelial progenitor cell differentiation and function. J Cell Biochem. 2012;113:1478–1487.
  • Xia Y, Min KH, Lee K. Synthesis and biological evaluation of decursin, prantschimgin and their derivatives. Bull Korean Chem Soc. 2009;30:43–48.
  • Lee S, Lee Y, Jung S, et al. Anti-tumor activities of decursinol angelate and decursin from Angelica gigas. Arch Pharm Res. 2003;26:727–730.
  • Pratheeshkumar P, Budhraja A, Son Y, et al. Quercetin inhibits angiogenesis mediated human prostate tumor growth by targeting VEGFR-2 regulated AKT/mTOR/P70S6K signaling pathways. PloS ONE. 2012;7:e47516.
  • Miean KH, Mohamed S. Flavonoid (myricetin, quercetin, kaempferol, luteolin, and apigenin) content of edible tropical plants. J Agric Food Chem. 2001;49:3106–3112.
  • Le Son H, Anh NP. Phytochemical composition, in vitro antioxidant and anticancer activities of quercetin from methanol extract of Asparagus cochinchinensis (Lour.) Merr. Tuber. J Med Plants Res. 2013;7:3360–3366.
  • Nevins J, Leone R, DeGregori G, et al. Role of the Rb/E2F pathway in cell growth control. J Cell Physiol. 1997;173:233–236.
  • De-Bondt H, Rosenblatt L, Jancarik J, et al. Crystal structure of cyclin-dependent kinase 2. Nature. 1993;363:595–602.
  • Sherr C, Roberts JM. CDK inhibitors: positive and negative regulators of G1-phase progression. Gene Dev. 1999;13:1501–1512.
  • Ho A, Dowdy S. F. Regulation of G1 cell-cycle progression by oncogenes and tumor suppressor genes. Curr Opin Genet Dev. 2002;12:47–52.
  • Shapiro G. I. Cyclin-dependent kinase pathways as targets for cancer treatment. J Clin Oncol. 2006;24:1770–1783.
  • Boonstra J. Progression through the G1‐phase of the on‐going cell cycle. J Cell Biochem. 2003;90:244–252.
  • Harper JW, Elledge SJ. Cdk inhibitors in development and cancer. Curr Opin Genet Dev. 1996;6:56–64.
  • Ullah A, Prottoy N, Araf I, et al. Molecular docking and pharmacological property analysis of phytochemicals from Clitoria ternatea as potent inhibitors of cell cycle checkpoint proteins in the cyclin/CDK pathway in cancer cells. CMB. 2019;09:81–94.
  • Benson C, Kaye S, Workman P, et al. Clinical anticancer drug development: targeting the cyclin-dependent kinases. Br J Cancer. 2005;92:7–12.
  • Deweese JE, Osheroff N. The DNA cleavage reaction of topoisomerase II: wolf in sheep’s clothing. Nucleic Acids Res. 2009;37:738–748.
  • Nitiss JL. Targeting DNA topoisomerase II in cancer chemotherapy. Nat Rev Cancer. 2009;9:338–350.
  • Russo P, Del-Bufalo A, Cesario A. Flavonoids acting on DNA topoisomerases: recent advances and future perspectives in cancer therapy. CMC. 2012;19:5287–5293.
  • Ashour ME, Atteya R, El-Khamisy SF. Topoisomerase-mediated chromosomal break repair: an emerging player in many games. Nat Rev Cancer. 2015;15:137–151.
  • Christmann-Franck S, Bertrand H, Goupil-Lamy O, et al. Structure-based virtual screening: an application to human topoisomerase II α. J Med Chem. 2004;47:6840–6853.
  • Folkman J. 1984. Angiogenesis. In: Jaffe EA, editor. Biology of endothelial cells. Boston (MA): Springer; p. 412–428.
  • Ferrara N, Davis-Smyth T. The biology of vascular endothelial growth factor. Endocr Rev. 1997;18:4–25.
  • Nowak D, Woolard G, Amin J, et al. Expression of pro-and anti-angiogenic isoforms of VEGF is differentially regulated by splicing and growth factors. J Cell Sci. 2008;121:3487–3495.
  • Kim K, Li J, Winer B, et al. Inhibition of vascular endothelial growth factor-induced angiogenesis suppresses tumour growth in vivo. Nature. 1993;362:841–844.
  • Ma X, Ma CX, Wang J. Endometrial carcinogenesis and molecular signaling pathways. AJMB. 2014;04:134–149.
  • Rini BI. Vascular endothelial growth factor–targeted therapy in renal cell carcinoma: current status and future directions. Clin Cancer Res. 2007;13:1098–1106.
  • Melincovici CS, Boşca AB, Şuşman S, et al. Vascular endothelial growth factor (VEGF)-key factor in normal and pathological angiogenesis. Rom J Morphol Embryol. 2018;59:455–467.
  • Tahara M, Kiyota N, Yamazaki T, et al. Lenvatinib for anaplastic thyroid cancer. Front Oncol. 2017;7:25.
  • Roskoski R. Jr, Vascular endothelial growth factor (VEGF) and VEGF receptor inhibitors in the treatment of renal cell carcinomas. Pharmacol Res. 2017;120:116–132.
  • Schrödinger Release 2018-4: Protein Preparation Wizard; Epik, Schrödinger, LLC, New York, NY, 2016; Impact, Schrödinger, LLC, New York, NY, 2016; Prime, Schrödinger, LLC, New York, NY; 2018.
  • Schrödinger Release 2018-4: Prime. New York (NY): Schrödinger, LLC; 2018.
  • Schrödinger Release 2018-4: LigPrep. New York (NY): Schrödinger, LLC; 2018.
  • Schrödinger Release 2018-4: Epik. New York (NY): Schrödinger, LLC; 2018.
  • Schrödinger Release 2018-4: Glide. New York (NY): Schrödinger, LLC; 2018.
  • Dash R, Hosen SZ, Karim MR, et al. In silico analysis of indole-3-carbinol and its metabolite DIM as EGFR tyrosine kinase inhibitors in platinum resistant ovarian cancer vis a vis ADME/T property analysis. J App Pharm Sci. 2015;5:073–078.
  • Visualizer DS. 2017. Release 4.1. San Diego (CA): Accelrys Inc.
  • Daina A, Michielin O, Zoete V. SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep. 2017;7:42717.
  • Cheng F, Li W, Zhou Y, et al. 2012. admetSAR: a comprehensive source and free tool for assessment of chemical ADMET properties. J Chem Inf Model. 2012;52:3099–3105.
  • Dong J, Wang NN, Yao ZJ, et al. S. ADMETlab: a platform for systematic ADMET evaluation based on a comprehensively collected ADMET database. J Cheminformatics. 2018;10:29.
  • Filimonov DA, Lagunin AA, Gloriozova TA, et al. Prediction of the biological activity spectra of organic compounds using the PASS online web resource. Chem Heterocycl Comp. 2014;50:444–457.
  • Geronikaki A, Poroikov V, Hadjipavlou ‐Litina D, et al. Computer aided predicting the biological activity spectra and experimental testing of new thiazole derivatives. Quant Struct Act Relat. 1999;18:16–25.
  • Zaretzki J, Bergeron C, Huang T, et al. RS-WebPredictor: a server for predicting CYP-mediated sites of metabolism on drug-like molecules. Bioinformatics. 2013;29:497–498.
  • Drwal M, Banerjee N, Dunkel P, et al. ProTox: a web server for the in silico prediction of rodent oral toxicity. Nucleic Acids Res. 2014;42:W53–W58.
  • Schrödinger Release 2018-4: Jaguar. New York (NY): Schrödinger, LLC; 2018.
  • Lee C, Yang W, Parr RG. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B Condens Matter. 1988;37:785–789.
  • Becke AD. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev A Gen Phys. 1988;38:3098–3100.
  • Pearson RG. Absolute electronegativity and hardness correlated with molecular orbital theory. Proc Natl Acad Sci U S A. 1986;83:8440–8441.
  • Parr RG, Yang W. Density-functional theory of atoms and molecules, Vol. 16 of International series of monographs on chemistry. New York: Oxford University Press; 1989.
  • http://gohom.win/ManualHom/Schrodinger/Schrodinger_2015-2_docs/maestro/help_Maestro/tools_menu/ramachandran_panel.html. [accessed 2020 Feb 05].
  • Yuriev E, Ramsland PA. Latest developments in molecular docking: 2010–2011 in review. J Mol Recognit. 2013;26:215–239.
  • Zhang X, Perez-Sanchez H, Lightstone FC. A comprehensive docking and MM/GBSA rescoring study of ligand recognition upon binding antithrombin. Curr Top Med Chem. 2017;17:1631–1639.
  • Sherman W, Day T, Jacobson M, et al. Novel procedure for modeling ligand/receptor induced fit effects. J Med Chem. 2006;49:534–553.
  • Aamir M, Singh V, Dubey K, et al. In silico prediction, characterization, molecular docking and dynamic studies on fungal SDRs as novel targets for searching potential fungicides against fusarium wilt in tomato. Front Pharmacol. 2018;9:1038.
  • Friesner RA, Murphy RB, Repasky MP, et al. Extra precision glide: docking and scoring incorporating a model of hydrophobic enclosure for protein − ligand complexes. J Med Chem. 2006;49:6177–6196.
  • Priyadarshini V, Pradhan D, Munikumar M, et al. Genome-based approaches to develop epitope-driven subunit vaccines against pathogens of infective endocarditis. J Biomol Struct Dyn. 2014;32:876–889.
  • Lipinski C, Lombardo A, Dominy F, et al. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev. 1997;23:3–25.
  • Gohlke H, Hendlich M, Klebe G. Knowledge-based scoring function to predict protein-ligand interactions. J Mol Biol. 2000;295:337–356.
  • Shoichet BK, McGovern SL, Wei B, et al. Lead discovery using molecular docking. Curr Opin Chem Biol. 2002;6:439–446.
  • Klebe G. 2015. Protein-ligand interactions as the basis for drug action. In: Scapin G, Patel D, Arnold E, editors. Multifaceted roles of crystallography in modern drug discovery. Dordrecht: Springer; p. 83–92.
  • Lipinski CA. Lead-and drug-like compounds: the rule-of-five revolution. Drug Discov Today Technol. 2004;1:337–341.
  • Pollastri MP. Overview on the rule of five. Curr Protoc Pharmacol. 2010;49:9–12.
  • Li AP. Screening for human ADME/Tox drug properties in drug discovery. Drug Discov Today. 2001;6:357–366.
  • Guengerich FP. Cytochrome P-450 3A4: regulation and role in drug metabolism. Annu Rev Pharmacol Toxicol. 1999;39:1–17.
  • Glue P, Clement R. P. Cytochrome P450 enzymes and drug metabolism – basic concepts and methods of assessment. Cell Mol Neurobiol. 1999;19:309–323.
  • Dixit B. A review on the effects of CMPF binding with human serum albumin. Bioinformatics Rev. 2017;3:9–18.
  • Radchenko EV, Dyabina AS, Palyulin VA, et al. Prediction of human intestinal absorption of drug compounds. Russ Chem Bull. 2016;65:576–580.
  • Wessel MD, Jurs PC, Tolan JW, et al. Prediction of human intestinal absorption of drug compounds from molecular structure. J Chem Inf Comput Sci. 1998;38:726–735.
  • Basant N, Gupta S, Singh KP. Predicting human intestinal absorption of diverse chemicals using ensemble learning based QSAR modeling approaches. Comput Biol Chem. 2016;61:178–196.
  • Swierczewska M, Lee KC, Lee S. What is the future of PEGylated therapies? Expert Opin Emerg Drugs. 2015;20:531–536.
  • Smalling RW. Molecular biology of plasminogen activators: what are the clinical implications of drug design? Am J Cardiol. 1996;78:2–7.
  • Sahin S, Benet LZ. The operational multiple dosing half-life: a key to defining drug accumulation in patients and to designing extended release dosage forms. Pharm Res. 2008;25:2869–2877.
  • Sanguinetti M, Jiang C, Curran C, et al. A mechanistic link between an inherited and an acquird cardiac arrthytmia: HERG encodes the IKr potassium channel. Cell. 1995;81:299–307.
  • Aronov AM. Predictive in silico modeling for hERG channel blockers. Drug Discov Today. 2005;10:149–155.
  • Cheng A, Dixon SL. In silico models for the prediction of dose-dependent human hepatotoxicity. J Comput Aided Mol Des. 2003;17:811–823.
  • Xu JJ, Diaz D, O'Brien PJ. Applications of cytotoxicity assays and pre-lethal mechanistic assays for assessment of human hepatotoxicity potential. Chem Biol Interact. 2004;150:115–128.
  • Mortelmans K, Zeiger E. The Ames Salmonella/microsome mutagenicity assay. Mutat Res. 2000;455:29–60.
  • Holt MP, Ju C. Mechanisms of drug-induced liver injury. AAPS J. 2006;8:E48–E54.
  • Lagunin A, Stepanchikova A, Filimonov D, et al. PASS: prediction of activity spectra for biologically active substances. Bioinformatics. 2000;16:747–748.
  • United Nations. Economic Commission for Europe. Secretariat. 2005. Globally harmonized system of classification and labelling of chemicals (GHS). United Nations Publications.
  • Tyzack JD, Mussa HY, Williamson MJ, et al. Cytochrome P450 site of metabolism prediction from 2D topological fingerprints using GPU accelerated probabilistic classifiers. J Cheminformatics. 2014;6:29.
  • Danielson P. B. The cytochrome P450 superfamily: biochemistry, evolution and drug metabolism in humans. Curr Drug Metab. 2002;3:561–597.
  • Matysiak J. Evaluation of electronic, lipophilic and membrane affinity effects on antiproliferative activity of 5-substituted-2-(2, 4-dihydroxyphenyl)-1, 3, 4-thiadiazoles against various human cancer cells. Eur J Med Chem. 2007;42:940–947.
  • Zhan CG, Nichols JA, Dixon DA. Ionization potential, electron affinity, electronegativity, hardness, and electron excitation energy: molecular properties from density functional theory orbital energies. J Phys Chem A. 2003;107:4184–4195.
  • Hoque MM, Halim MA, Sarwar MG, et al. Palladium‐catalyzed cyclization of 2‐alkynyl‐N‐ethanoyl anilines to indoles: synthesis, structural, spectroscopic, and mechanistic study. J Phys Org Chem. 2015;28:732–742.
  • Ayers PW, Parr RG, Pearson RG. Elucidating the hard/soft acid/base principle: a perspective based on half-reactions. J Chem Phys. 2006;124:194107.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.