86
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Jateorhizine alleviates insulin resistance by promoting adipolysis and glucose uptake in adipocytes

, , &
Pages 255-262 | Received 14 Jan 2020, Accepted 03 Aug 2020, Published online: 18 Aug 2020

References

  • Gobato AO, Vasques AC, Zambon MP, et al. Metabolic syndrome and insulin resistance in obese adolescents. Rev Paul Pediatr. 2014;32(1):55–62.
  • Roberts CK, Hevener AL, Barnard RJ. Metabolic syndrome and insulin resistance: underlying causes and modification by exercise training. Compr Physiol. 2013;3(1):1–58.
  • Czech MP. Insulin action and resistance in obesity and type 2 diabetes. Nat Med. 2017;23(7):804–814.
  • Yazici D, Sezer H. Insulin resistance, obesity and lipotoxicity. Adv Exp Med Biol. 2017;960:277–304.
  • Jaiswal M, Schinske A, Pop-Busui R. Lipids and lipid management in diabetes. Best Pract Res Clin Endocrinol Metab. 2014;28(3):325–338.
  • Morigny P, Houssier M, Mouisel E, et al. Adipocyte lipolysis and insulin resistance. Biochimie. 2016;125:259–266.
  • Wang Y, Zhou S, Wang M, et al. UHPLC/Q-TOFMS-based metabolomics for the characterization of cold and hot properties of Chinese materia medica. J Ethnopharmacol. 2016;179:234–242.
  • Zhang Q, Liang XC. [Progress in study of antioxidant effects of Coptis chinensis and its major contributions to diabetes treatment/therapy]. CJCMM. 2015;40(12):2285–2288.
  • Cui L, Liu M, Chang X, et al. The inhibiting effect of the Coptis chinensis polysaccharide on the type II diabetic mice. Biomed Pharmacother. 2016;81:111–119.
  • Zhen Z, Chang B, Li M, et al. Anti-diabetic effects of a Coptis chinensis containing new traditional Chinese medicine formula in type 2 diabetic rats. Am J Chin Med. 2011;39(1):53–63.
  • Li JC, Shen XF, Shao JA, et al. The total alkaloids from Coptis chinensis Franch improve cognitive deficits in type 2 diabetic rats. Drug Des Devel Ther. 2018;12:2695–2706.
  • Friedemann T, Schumacher U, Tao Y, et al. Neuroprotective activity of coptisine from coptis chinensis (Franch). Evid Based Complement Alternat Med. 2015;2015:827308.
  • Wu M, Wang J, Liu LT. Advance of studies on anti-atherosclerosis mechanism of berberine. Chin J Integr Med. 2010;16(2):188–192.
  • Wei SC, Xu LJ, Zou X, et al. [Pharmacokinetic and pharmacodynamic characteristics of berberine and jateorhizine in Coptidis Rhizoma powder and their monomeric compounds in type 2 diabetic rats]. Zhongguo Zhong Yao Za Zhi. 2015;40(21):4262–4267.
  • Ma H, Hu Y, Zou Z, et al. Antihyperglycemia and antihyperlipidemia effect of protoberberine alkaloids from rhizoma coptidis in HepG2 Cell and diabetic KK-Ay mice. Drug Dev Res. 2016;77(4):163–170.
  • Yaghootkar H, Scott RA, White CC, et al. Genetic evidence for a normal-weight "metabolically obese" phenotype linking insulin resistance, hypertension, coronary artery disease, and type 2 diabetes. Diabetes. 2014;63(12):4369–4377.
  • Choi JS, Kim JH, Ali MY, et al. Coptis chinensis alkaloids exert anti-adipogenic activity on 3T3-L1 adipocytes by downregulating C/EBP-α and PPAR-γ. Fitoterapia. 2014;98:199–208.
  • Fan H, Chen YY, Bei WJ, et al. In vitro screening for antihepatic steatosis active components within coptidis rhizoma alkaloids extract using liver cell extraction with HPLC analysis and a free fatty acid-induced hepatic steatosis HepG2 cell assay. Evid-Based Complement Alternat Med. 2013;2013:1–9.
  • Janani C, Ranjitha Kumari BD. PPAR gamma gene-a review. Diabetes Metab Syndr. 2015;9(1):46–50.
  • Zhang ZC, Liu Y, Li SF, et al. Suv39h1 mediates AP-2α-dependent inhibition of C/EBPα expression during adipogenesis. Mol Cell Biol. 2014;34(12):2330–2338.
  • Qiao Y, Liu L, Yin L, et al. FABP4 contributes to renal interstitial fibrosis via mediating inflammation and lipid metabolism. Cell Death Dis. 2019;10(6):382.
  • Sztalryd C, Brasaemle DL. The perilipin family of lipid droplet proteins: gatekeepers of intracellular lipolysis. Biochim Biophys Acta Mol Cell Biol Lipids. 2017;1862(10 Pt B):1221–1232.
  • Bruning U, Morales-Rodriguez F, Kalucka J, et al. Impairment of angiogenesis by fatty acid synthase inhibition involves mTOR malonylation. Cell Metab. 2018;28(6):866–880.e15.
  • McMillin SL, Schmidt DL, Kahn BB, et al. GLUT4 is not necessary for overload-induced glucose uptake or hypertrophic growth in mouse skeletal muscle. Diabetes. 2017;66(6):1491–1500.
  • Mokashi P, Khanna A, Pandita N. Flavonoids from enicostema littorale blume enhances glucose uptake of cells in insulin resistant human liver cancer (HepG2) cell line via IRS-1/PI3K/Akt pathway. Biomed Pharmacother. 2017;90:268–277.
  • Eckstein SS, Weigert C, Lehmann R. Divergent roles of IRS (Insulin Receptor Substrate) 1 and 2 in liver and skeletal muscle. Curr Med Chem. 2017;24(17):1827–1852.
  • Hou N, Mai Y, Qiu X, et al. Carvacrol attenuates diabetic cardiomyopathy by modulating the PI3K/AKT/GLUT4 pathway in diabetic mice. Front Pharmacol. 2019;10:998.
  • Deng D, Yan N. GLUT, SGLT, and SWEET: structural and mechanistic investigations of the glucose transporters. Protein Sci. 2016;25(3):546–558.
  • Li Z, Frey JL, Wong GW, et al. Glucose Transporter-4 facilitates insulin-stimulated glucose uptake in osteoblasts. Endocrinology. 2016;157(11):4094–4103.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.