136
Views
6
CrossRef citations to date
0
Altmetric
Original Articles

Rational design and chemical modification of TEAD coactivator peptides to target hippo signaling pathway against gastrointestinal cancers

, &
Pages 408-415 | Received 08 Jul 2020, Accepted 29 Aug 2020, Published online: 10 Sep 2020

References

  • Yu FX, Guan KL. The Hippo pathway: regulators and regulations. Genes Dev. 2013;27(4):355–371.
  • Sudol M, Harvey KF. Modularity in the Hippo signaling pathway. Trends Biochem Sci. 2010;35(11):627–633.
  • Misra JR, Irvine KD. The Hippo signaling network and its biological functions. Annu Rev Genet. 2018;52:65–87.
  • Han Y. Analysis of the role of the Hippo pathway in cancer. J Transl Med. 2019;17(1):116.
  • Calses PC, Crawford JJ, Lill JR, et al. Hippo pathway in cancer: aberrant regulation and therapeutic opportunities. Trends Cancer. 2019;5(5):297–307.
  • Kang W, Cheng ASL, Yu J, et al. Emerging role of Hippo pathway in gastric and other gastrointestinal cancers. World J Gastroenterol. 2016;22(3):1279–1288.
  • Sebio A, Lenz HJ. Molecular pathways: Hippo signaling, a critical tumor suppressor. Clin Cancer Res. 2015;21(22):5002–5007.
  • Kim MK, Jang JW, Bae SC. DNA binding partners of YAP/TAZ. BMB Rep. 2018;51(3):126–133.
  • Qiao Y, Li T, Zheng S, et al. The Hippo pathway as a drug target in gastric cancer. Cancer Lett. 2018;420:14–25.
  • Santucci M, Vignudelli T, Ferrari S, et al. The Hippo pathway and YAP/TAZ-TEAD protein-protein interaction as targets for regenerative medicine and cancer treatment. J Med Chem. 2015;58(12):4857–4873.
  • Crook ZR, Sevilla GP, Friend D, et al. Mammalian display screening of diverse cystine-dense peptides for difficult to drug targets. Nat Commun. 2017;8(1):2244.
  • Furet P, Salem B, Mesrouze Y, et al. Structure-based design of potent linear peptide inhibitors of the YAP-TEAD protein-protein interaction derived from the YAP omega-loop sequence. Bioorg Med Chem Lett. 2019;29(16):2316–2319.
  • Wu D, Luo L, Yang Z, et al. Targeting human hippo TEAD binding interface with YAP/TAZ-derived, flexibility-reduced peptides in gastric cancer. Int J Pept Res Ther. 2020. DOI:10.1007/s10989-020-10069-9
  • Zhang D, He D, Pan X, et al. Rational design and intramolecular cyclization of hotspot peptide segments at YAP-TEAD4 complex interface. Protein Pept Lett. 2020;27:1–10.
  • Zhang Z, Lin Z, Zhou Z, et al. Structure-based design and synthesis of potent cyclic peptides inhibiting the YAP-TEAD protein-protein interaction. ACS Med Chem Lett. 2014;5(9):993–998.
  • Jiao S, Wang H, Shi Z, et al. A peptide mimicking VGLL4 function acts as a YAP antagonist therapy against gastric cancer. Cancer Cell. 2014;25(2):166–180.
  • Walensky LD, Bird GH. Hydrocarbon-stapled peptides: principles, practice, and progress. J Med Chem. 2014;57(15):6275–6288.
  • Qian H, He P, Lv F, et al. Genome-wide analysis of LXXLL-mediated DAX1/SHP-nuclear receptor interaction network and rational design of stapled LXXLL-based peptides to target the specific network profile. Int J Biol Macromol. 2019;129:13–22.
  • Zhou P, Yang C, Ren Y, et al. What are the ideal properties for functional food peptides with antihypertensive effect? A computational peptidology approach. Food Chem. 2013;141(3):2967–2973.
  • Zhou P, Wang C, Tian F, et al. Biomacromolecular quantitative structure-activity relationship (BioQSAR): a proof-of-concept study on the modeling, prediction and interpretation of protein-protein binding affinity. J Comput Aided Mol Des. 2013;27(1):67–78.
  • Berman HM, Westbrook J, Feng Z, et al. The protein data bank. Nucleic Acids Res. 2000;28(1):235–242.
  • Johansson MU, Zoete V, Michielin O, et al. Defining and searching for structural motifs using DeepView/Swiss-PdbViewer. BMC Bioinformatics. 2012;13:173.
  • Ryu J, Lee M, Cha J, et al. BetaSCPWeb: side-chain prediction for protein structures using Voronoi diagrams and geometry prioritization. Nucleic Acids Res. 2016;44(W1):W416–W423.
  • van der Spoel D, Lindahl E, Hess B, et al. GROMACS: fast, flexible, and free. J Comput Chem. 2005;26(16):1701–1718.
  • Yang C, Wang C, Zhang S, et al. Structural and energetic insights into the intermolecular interaction among human leukocyte antigens, clinical hypersensitive drugs and antigenic peptides. Mol Simul. 2015;41(9):741–751.
  • Zhou P, Zhang S, Wang Y, et al. Structural modeling of HLA-B*1502/peptide/carbamazepine/T-cell receptor complex architecture: implication for the molecular mechanism of carbamazepine-induced Stevens-Johnson syndrome/toxic epidermal necrolysis. J Biomol Struct Dyn. 2016;34(8):1806–1817.
  • Wang Y, Zhao T, Wei D, et al. How reliable are molecular dynamics simulations of membrane active antimicrobial peptides? Biochim Biophys Acta. 2014;1838(9):2280–2288.
  • Hess B, Bekker H, Berendsen HJC, et al. LINCS: a linear constraint solver for molecular simulations. J Comput Chem. 1997;18(12):1463–1472.
  • Darden T, York D, Pedersen L. Particle mesh Ewald: and N.log(N) method for Ewald sums in large systems. J Chem Phys. 1993;98(12):10089–10092.
  • Homeyer N, Gohlke H. Free energy calculations by the molecular mechanics Poisson-Boltzmann surface area method. Mol Inform. 2012;31(2):114–122.
  • Nguyen PH, Derreumaux P. Configurational entropy: an improvement of the quasiharmonic approximation using configurational temperature. Phys Chem Chem Phys. 2012;14(2):877–886.
  • Yu H, Zhou P, Deng M, et al. Indirect readout in protein-peptide recognition: a different story from classical biomolecular recognition. J Chem Inf Model. 2014;54(7):2022–2032.
  • Bird GH, Crannell WC, Walensky LD. Chemical synthesis of hydrocarbon-stapled peptides for protein interaction research and therapeutic targeting. Curr Protoc Chem Biol. 2011;3(3):99–117.
  • Zhao Y, Jiao Y, Sun F, et al. Revisiting the molecular mechanism of acquired resistance to reversible tyrosine kinase inhibitors caused by EGFR gatekeeper T790M mutation in non-small-cell lung cancer. Med Chem Res. 2018;27(9):2160–2170.
  • Tian W, Yu J, Tomchick DR, et al. Structural and functional analysis of the YAP-binding domain of human TEAD2. Proc Natl Acad Sci USA. 2010;107(16):7293–7298.
  • Zhou P, Miao Q, Yan F, et al. Is protein context responsible for peptide-mediated interactions? Mol Omics. 2019;15(4):280–295.
  • Wu D, Gu Q, Zhao N, et al. Structure-based rational design of peptide hydroxamic acid inhibitors to target tumor necrosis factor-α converting enzyme as potential therapeutics for hepatitis. J Drug Target. 2015;23(10):936–942.
  • Parker KC, Bednarek MA, Coligan JE. Scheme for ranking potential HLA-A2 binding peptides based on independent binding of individual peptide side-chain. J Immunol. 1994;152(1):163–175.
  • Salentin S, Schreiber S, Haupt VJ, et al. PLIP: fully automated protein-ligand interaction profiler. Nucleic Acids Res. 2015;43(W1):W443–W447.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.