285
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

FAM19A5/S1PR1 signaling pathway regulates the viability and proliferation of mantle cell lymphoma

, , , , &
Pages 225-229 | Received 23 Sep 2020, Accepted 20 Feb 2021, Published online: 09 Mar 2021

References

  • Ishikawa T, Imada K. Adult T cell leukemia/lymphoma. Lymphoid Neoplasms 3ed. 2010;134(6):e40–7.
  • Kim SK, Ahn HS, Back HJ, et al. Clinical and hematologic manifestations in patients with diamond blackfan anemia in Korea. Korean J Hematol. 2012;47(2):131–104.
  • Kwee TC, Kwee RM, Nievelstein RAJ. Imaging in staging of malignant lymphoma: a systematic review. Blood. 2008;111(2):504–516.
  • Barrington SF, Mikhaeel NG, Kostakoglu L, et al. Role of imaging in the staging and response assessment of lymphoma: consensus of the international conference on malignant lymphomas imaging working group. J Clin Oncol. 2014;32(27):3048–3058.
  • Khalaj AJ, Sterky FH, Sclip A, et al. Deorphanizing FAM19A proteins as pan-neurexin ligands with an unusual biosynthetic binding mechanism. J Cell Biol. 2020;219(9):e202004164.
  • Wang Y, Chen D, Zhang Y, et al. Novel adipokine, FAM19A5, inhibits neointima formation after injury through sphingosine-1-phosphate receptor 2. Circulation. 2018;138(1):48–63.
  • Park MY, Kim HS, Lee M, et al. FAM19A5, a brain-specific chemokine, inhibits RANKL-induced osteoclast formation through formyl peptide receptor 2. Sci Rep. 2017;7(1):15575.
  • Lee YB, Hwang HJ, Kim JA, et al. Association of serum FAM19A5 with metabolic and vascular risk factors in human subjects with or without type 2 diabetes. Diabetes Vasc Dis Res. 2019;16(6):530–538.
  • Shahapal A, Cho EB, Yong HJ, et al. FAM19A5 expression during embryogenesis and in the adult traumatic brain of FAM19A5-LacZ Knock-in mice. Front Neurosci. 2019;13:917.
  • Kang D, Kim HR, Kim KK, et al. Brain-specific chemokine FAM19A5 induces hypothalamic inflammation. Biochem Biophys Res Commun. 2020;523(4):829–834.
  • Han KM, Tae WS, Kim A, et al. Serum FAM19A5 levels: a novel biomarker for neuroinflammation and neurodegeneration in major depressive disorder. Brain Behav Immun. 2020;87:852–859.
  • Blaho VA, Hla T. Thematic review series: lysophospholipids and their receptors: an update on the biology of sphingosine 1-phosphate receptors. J Lipid Res. 2014;55(8):1596–1608.
  • Cartier A, Hla T. Sphingosine 1-phosphate: lipid signaling in pathology and therapy. Science. 2019;366(6463):eaar5551.
  • Zhang G, Yang L, Kim GS, et al. Critical role of sphingosine-1-phosphate receptor 2 (S1PR2) in acute vascular inflammation. Blood. 2013;122(3):443–455.
  • Kempf A, Tews B, Arzt ME, et al. The sphingolipid receptor S1PR2 is a receptor for nogo-A repressing synaptic plasticity. PLoS Biol. 2014;12(1):e1001763.
  • Singh SK, Spiegel S. Sphingosine-1-phosphate signaling: a novel target for simultaneous adjuvant treatment of triple negative breast cancer and chemotherapy-induced neuropathic pain. Adv Biol Regul. 2020; 75:100670.
  • Liu R, Li X, Hylemon PB, et al. Conjugated bile acids promote invasive growth of esophageal adenocarcinoma cells and cancer stem cell expansion via sphingosine 1-phosphate receptor 2-mediated yes-associated protein activation. Am J Pathol. 2018;188(9):2042–2058.
  • Wang Y, Aoki H, Yang J, et al. The role of sphingosine 1-phosphate receptor 2 in bile-acid-induced cholangiocyte proliferation and cholestasis-induced liver injury in mice. Hepatology. 2017;65(6):2005–2018.
  • Virtanen A, Huttala O, Tihtonen K, et al. Angiogenic capacity in pre-eclampsia and uncomplicated pregnancy estimated by assay of angiogenic proteins and an in vitro vasculogenesis/angiogenesis test. Angiogenesis. 2019;22(1):67–74.
  • Kocher T, Wagner RN, Klausegger A, et al. Improved double-nicking strategies for COL7A1-editing by homologous recombination. Mol Ther Nucleic Acids. 2019;18:496–507.
  • Liu T, Zhang M, Mukosera GT, et al. L-NAME releases nitric oxide and potentiates subsequent nitroglycerin-mediated vasodilation. Redox Biol. 2019;26:101238.
  • Rajaram RD, Dissard R, Faivre A, et al. Tubular NOX4 expression decreases in chronic kidney disease but does not modify fibrosis evolution. Redox Biol. 2019;26:101234.
  • Dutta RK, Chinnapaiyan S, Unwalla H. Aberrant MicroRNAomics in pulmonary complications: implications in lung health and diseases. Mol Ther Nucleic Acids. 2019;18:413–431.
  • Birnbaum Y, Tran D, Bajaj M, et al. DPP-4 inhibition by linagliptin prevents cardiac dysfunction and inflammation by targeting the Nlrp3/ASC inflammasome. Basic Res Cardiol. 2019; 114(5):35.
  • Rusnati M, Borsotti P, Moroni E, et al. The calcium-binding type III repeats domain of thrombospondin-2 binds to fibroblast growth factor 2 (FGF2). Angiogenesis. 2019;22(1):133–144.
  • Nwadozi E, Ng A, Strömberg A, et al. Leptin is a physiological regulator of skeletal muscle angiogenesis and is locally produced by PDGFRα and PDGFRβ expressing perivascular cells. Angiogenesis. 2019;22(1):103–115.
  • Mayorov V, Uchakin P, Amarnath V, et al. Targeting of reactive isolevuglandins in mitochondrial dysfunction and inflammation. Redox Biol. 2019;26:101300.
  • Breda Cn de S, Davanzo GG, Basso PJ, et al. Mitochondria as central hub of the immune system. Redox Biol. 2019;26:101255.
  • Dong H, Weng C, Bai R, et al. The regulatory network of miR-141 in the inhibition of angiogenesis. Angiogenesis. 2019;22(2):251–262.
  • Wu XG, Zhou CF, Zhang YM, et al. Cancer-derived exosomal miR-221-3p promotes angiogenesis by targeting THBS2 in cervical squamous cell carcinoma. Angiogenesis. 2019;22(3):397–410.
  • Heusch G. Coronary microvascular obstruction: the new frontier in cardioprotection. Basic Res Cardiol. 2019;114(6):45.
  • Noishiki C, Yuge S, Ando K, et al. Live imaging of angiogenesis during cutaneous wound healing in adult zebrafish. Angiogenesis. 2019;22(2):341–354.
  • Pervaiz S. Cell signaling and fate through the redox lens. Redox Biol. 2019;25:101298.
  • Zito E. Targeting ER stress/ER stress response in myopathies. Redox Biol. 2019;26:101232.
  • Hou P, Li H, Yong H, et al. PinX1 represses renal cancer angiogenesis via the mir-125a-3p/VEGF signaling pathway. Angiogenesis. 2019;22(4):507–519.
  • Mukwaya A, Mirabelli P, Lennikov A, et al. Revascularization after angiogenesis inhibition favors new sprouting over abandoned vessel reuse. Angiogenesis. 2019;22(4):553–567.
  • Wei S, Wang Q, Zhou H, et al. miR-455-3p alleviates hepatic stellate cell activation and liver fibrosis by suppressing HSF1 expression. Mol Ther Nucleic Acids. 2019;16:758–769.
  • Lee HL, Seok HY, Ryu HW, et al. Serum FAM19A5 in neuromyelitis optica spectrum disorders: can it be a new biomarker representing clinical status? Mult Scler. 2020;26(13):1700–1707.
  • Spiegel S, Milstien S. The outs and the ins of sphingosine-1-phosphate in immunity. Nat Rev Immunol. 2011;11(6):403–415.
  • Spiegel S, Milstien S. Sphingosine-1-phosphate: an enigmatic signalling lipid. Nat Rev Mol Cell Biol. 2003;4(5):397–407.
  • Mendelson K, Evans T, Hla T. Sphingosine 1-phosphate signalling. Dev. 2014;141(1):5–9.
  • Cyster JG, Schwab SR. Sphingosine-1-phosphate and lymphocyte egress from lymphoid organs. Annu Rev Immunol. 2012;30:69–94.
  • Chaudhry BZ, Cohen JA, Conway DS. Sphingosine 1-phosphate receptor modulators for the treatment of multiple sclerosis. Neurotherapeutics. 2017;14(4):859–873.
  • Cruz-Orengo L, Daniels BP, Dorsey D, et al. Enhanced sphingosine-1-phosphate receptor 2 expression underlies female CNS autoimmunity susceptibility. J Clin Invest. 2014;124(6):2571–2584.
  • Ishii M, Kikuta J, Shimazu Y, et al. Chemorepulsion by blood S1P regulates osteoclast precursor mobilization and bone remodeling in vivo. J Exp Med. 2010;207(13):2793–2798.
  • Adada M, Canals D, Hannun YA, et al. Sphingosine-1-phosphate receptor 2. Febs J. 2013;280(24):6354–6366.
  • Ponnusamy S, Selvam SP, Mehrotra S, et al. Communication between host organism and cancer cells is transduced by systemic sphingosine kinase 1/sphingosine 1-phosphate signalling to regulate tumour metastasis. EMBO Mol Med. 2012;4(8):761–775.
  • Mosquera Orgueira A, Rodríguez Antelo B, Díaz Arias JÁ, et al. Novel mutation hotspots within non-coding regulatory regions of the chronic lymphocytic leukemia genome. Sci Rep. 2020;10(1):2407.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.