155
Views
7
CrossRef citations to date
0
Altmetric
Original Articles

Baicalin regulates the development of pediatric asthma via upregulating microRNA-103 and mediating the TLR4/NF-κB pathway

&
Pages 230-240 | Received 21 Dec 2020, Accepted 05 Mar 2021, Published online: 17 Mar 2021

References

  • Huang J, Pansare M. New treatments for asthma. Pediatr Clin North Am. 2019;66(5):925–939.
  • Sottile G, Ferrante G, Torregrossa M, et al. An association analysis to identify genetic variants linked to asthma and rhino-conjunctivitis in a cohort of Sicilian children. Ital J Pediatr. 2019;45(1):16.
  • Finkas LK, Martin R. Role of small airways in asthma. Immunol Allergy Clin North Am. 2016;36(3):473–482.
  • Tyler SR, Bunyavanich S. Leveraging -omics for asthma endotyping. J Allergy Clin Immunol. 2019;144(1):13–23.
  • Barnthouse M, Jones BL. The impact of environmental chronic and toxic stress on asthma. Clin Rev Allergy Immunol. 2019;57(3):427–438.
  • Bhattacharjee D, Chogtu B, Magazine R. Statins in asthma: potential beneficial effects and limitations. Pulm Med. 2015; 2015:835204
  • Castillo JR, Peters SP, Busse WW. Asthma exacerbations: pathogenesis, prevention, and treatment. J Allergy Clin Immunol Pract. 2017;5(4):918–927.
  • Shergis JL, Wu L, Zhang AL, et al. Herbal medicine for adults with asthma: a systematic review. J Asthma. 2016;53(6):650–659.
  • Ming J, Zhuoneng L, Guangxun Z. Protective role of flavonoid baicalin from Scutellaria baicalensis in periodontal disease pathogenesis: a literature review. Complement Ther Med. 2018;38:11–18.
  • Qian Y, Chen Y, Wang L, et al. Effects of baicalin on inflammatory reaction, oxidative stress and PKDl and NF-kB protein expressions in rats with severe acute pancreatitis1. Acta Cir Bras. 2018;33(7):556–564.
  • Ji W, Liang K, An R, et al. Baicalin protects against ethanol-induced chronic gastritis in rats by inhibiting Akt/NF-κB pathway. Life Sci. 2019; 239:117064
  • Liu J, Wei Y, Luo Q, et al. Baicalin attenuates inflammation in mice with OVA-induced asthma by inhibiting NF-κB and suppressing CCR7/CCL19/CCL21. Int J Mol Med. 2016;38(5):1541–1548.
  • Ma C, Ma Z, Fu Q, et al. Anti-asthmatic effects of baicalin in a mouse model of allergic asthma. Phytother Res. 2014;28(2):231–237.
  • Fu S, Liu J, Xu J, et al. The effect of baicalin on microRNA expression profiles in porcine aortic vascular endothelial cells infected by Haemophilus parasuis. Mol Cell Biochem. 2020;472(1-2):45–56.
  • Kai W, Qian XU, Qun WU. MicroRNAs and asthma regulation. Iran J Allergy Asthma Immunol. 2015;14(2):120–125.
  • Maneechotesuwan K. Role of microRNA in severe asthma. Respir Investig. 2019;57(1):9–19.
  • Yang M, Zhao L, Sun M. Diagnostic value of miR-103 in Patients with sepsis and noninfectious SIRS and its regulatory role in LPS-induced inflammatory response by targeting TLR4. Int J Genomics. 2020;2020:1–8.
  • Wu M, Gao L, He M, et al. Plasmacytoid dendritic cell deficiency in neonates enhances allergic airway inflammation via reduced production of IFN-α. Cell Mol Immunol. 2020;17(5):519–532.
  • Fang P, Sun Y, Gu X, et al. Baicalin ameliorates hepatic insulin resistance and gluconeogenic activity through inhibition of p38 MAPK/PGC-1α pathway. Phytomedicine. 2019;64:153074
  • Zhong J, Li G, Xu H, et al. Baicalin ameliorates chronic mild stress-induced depression-like behaviors in mice and attenuates inflammatory cytokines and oxidative stress. Braz J Med Biol Res. 2019;52(7):e8434.
  • Underwood S, Foster M, Raeburn D, et al. Time-course of antigen-induced airway inflammation in the guinea-pig and its relationship to airway hyperresponsiveness. Eur Respir J. 1995;8(12):2104–2113.
  • Guo LT, Wang SQ, Su J, et al. Baicalin ameliorates neuroinflammation-induced depressive-like behavior through inhibition of toll-like receptor 4 expression via the PI3K/AKT/FoxO1 pathway. J Neuroinflammation. 2019;16(1):95.
  • Wang H, Zhang Y, Bai R, et al. Baicalin attenuates alcoholic liver injury through modulation of hepatic oxidative stress, inflammation and sonic hedgehog pathway in rats. Cell Physiol Biochem. 2016;39(3):1129–1140.
  • Ferraro VA, Zanconato S, Baraldi E, et al. Nitric oxide and biological mediators in pediatric chronic rhinosinusitis and asthma. J Clin Med. 2019;8(11):1783.
  • Finotto S. Resolution of allergic asthma. Semin Immunopathol. 2019;41(6):665–674.
  • Echavarria R, Mayaki D, Neel JC, et al. Angiopoietin-1 inhibits toll-like receptor 4 signalling in cultured endothelial cells: role of miR-146b-5p. Cardiovasc Res. 2015;106(3):465–477.
  • Montesinos J, Pascual M, Pla A, et al. TLR4 elimination prevents synaptic and myelin alterations and long-term cognitive dysfunctions in adolescent mice with intermittent ethanol treatment. Brain Behav Immun. 2015; 45:233–244.
  • Tang W, Chen X, Liu H, et al. Expression of Nrf2 promotes schwann cell-mediated sciatic nerve recovery in diabetic peripheral neuropathy. Cell Physiol Biochem. 2018;46(5):1879–1894.
  • Noutsios GT, Floros J. Childhood asthma: causes, risks, and protective factors; a role of innate immunity. Swiss Med Wkly. 2014; 144:w14036
  • Wu Y, Wang F, Fan L, et al. Baicalin alleviates atherosclerosis by relieving oxidative stress and inflammatory responses via inactivating the NF-κB and p38 MAPK signaling pathways . Biomed Pharmacother. 2018; 97:1673–1679.
  • Aldakheel FM, Thomas PS, Bourke JE, et al. Relationships between adult asthma and oxidative stress markers and pH in exhaled breath condensate: a systematic review. Allergy. 2016;71(6):741–757.
  • Mishra V, Banga J, Silveyra P. Oxidative stress and cellular pathways of asthma and inflammation: Therapeutic strategies and pharmacological targets. Pharmacol Ther. 2018;181:169–182.
  • Cockcroft DW. Environmental causes of asthma. Semin Respir Crit Care Med. 2018;39(1):12–18.
  • Santos Epifanio AP, Balbino KP, Jorge MP, et al. Metabolic, inflammatory and oxidative stress markers in the nitric oxide variation of hemodialysis subjects. Nutr Hosp. 2018; 35:176–184.
  • Lee J, Lee S, Zhang H, et al. Interaction of IL-6 and TNF-α contributes to endothelial dysfunction in type 2 diabetic mouse hearts . PLoS One. 2017;12(11):e0187189.
  • Ran Q, Zhang L, Qiu YH, et al. [Effects of 3-methyladenine on airway inflammation, airway hyperresponsiveness and mucus secretion in asthmatic mice]. Zhonghua Jie He He Hu Xi Za Zhi. 2019; 42:185–192.
  • Meng X, Hu L, Li W. Baicalin ameliorates lipopolysaccharide-induced acute lung injury in mice by suppressing oxidative stress and inflammation via the activation of the Nrf2-mediated HO-1 signaling pathway. Naunyn Schmiedebergs Arch Pharmacol. 2019;392(11):1421–1433.
  • Hu Q, Gao L, Peng B, et al. Baicalin and baicalein attenuate renal fibrosis in vitro via inhibition of the TGF-β1 signaling pathway. Exp Ther Med. 2017;14(4):3074–3080.
  • Shi H, Ren K, Lv B, et al. Baicalin from Scutellaria baicalensis blocks respiratory syncytial virus (RSV) infection and reduces inflammatory cell infiltration and lung injury in mice. Sci Rep. 2016; 6:35851
  • Chen DS, Cao JG, Zhu B, et al. Baicalin attenuates joint pain and muscle dysfunction by inhibiting muscular oxidative stress in an experimental osteoarthritis rat model. Arch Immunol Ther Exp (Warsz)). 2018;66(6):453–461.
  • Dinda B, Dinda S, DasSharma S, et al. Therapeutic potentials of baicalin and its aglycone, baicalein against inflammatory disorders. Eur J Med Chem. 2017; 131:68–80.
  • Xu L, Li J, Zhang Y, et al. Regulatory effect of baicalin on the imbalance of Th17/Treg responses in mice with allergic asthma. J Ethnopharmacol. 2017; 208:199–206.
  • Taka S, Tzani-Tzanopoulou P, Wanstall H, et al. MicroRNAs in Asthma and Respiratory Infections: Identifying Common Pathways. Allergy Asthma Immunol Res. 2020;12(1):4–23.
  • Pacholewska A, Kraft MF, Gerber V, et al. Differential Expression of Serum MicroRNAs Supports CD4(+) T Cell Differentiation into Th2/Th17 Cells in Severe Equine Asthma. Genes (Basel). 2017;8(12):383.
  • Wang H, Yao H, Yi B, et al. MicroRNA-638 inhibits human airway smooth muscle cell proliferation and migration through targeting cyclin D1 and NOR1. J Cell Physiol. 2018;234(1):369–381.
  • Yu ZH, Wang YX, Song Y, et al. Up-regulation of KCa3.1 promotes human airway smooth muscle cell phenotypic modulation. Pharmacol Res. 2013; 77:30–38.
  • Huang S, Chen P, Shui X, et al. Baicalin attenuates transforming growth factor-beta1-induced human pulmonary artery smooth muscle cell proliferation and phenotypic switch by inhibiting hypoxia inducible factor-1alpha and aryl hydrocarbon receptor expression. J Pharm Pharmacol. 2014;66(10):1469–1477.
  • Yang G, Li JQ, Bo JP, et al. Baicalin inhibits PDGF-induced proliferation and migration of airway smooth muscle cells. Int J Clin Exp Med. 2015;8(11):20532–20539.
  • Deng B, Du J, Hu R, et al. MicroRNA-103/107 is involved in hypoxia-induced proliferation of pulmonary arterial smooth muscle cells by targeting HIF-1β. Life Sci. 2016; 147:117–124.
  • Xu MC, Gao XF, Ruan C, et al. miR-103 regulates oxidative stress by targeting the BCL2/adenovirus E1B 19 kDa interacting protein 3 in HUVECs. Oxid Med Cell Longev. 2015;2015:489647.
  • Hwang YH, Lee Y, Paik MJ, et al. Inhibitions of HMGB1 and TLR4 alleviate DINP-induced asthma in mice. Toxicol Res (Camb)). 2019;8(5):621–629.
  • Tang Y, Huang W, Song Q, et al. Paeonol ameliorates ovalbumin-induced asthma through the inhibition of TLR4/NF-kappaB and MAPK signaling. Evid Based Complement Alternat Med. 2018;2018:1–8.
  • Zhang H, Yang N, Wang T, et al. Vitamin D reduces inflammatory response in asthmatic mice through HMGB1/TLR4/NF-κB signaling pathway. Mol Med Rep. 2018;17(2):2915–2920.
  • Helal MG, Megahed NA, Abd Elhameed AG. Abd Elhameed AG. Saxagliptin mitigates airway inflammation in a mouse model of acute asthma via modulation of NF-kB and TLR4. Life Sci. 2019; 239:117017
  • Xi Z, Qiao Y, Wang J, et al. Gastrodin relieves inflammation injury induced by lipopolysaccharides in MRC-5 cells by up-regulation of miR-103. J Cell Mol Med. 2020;24(2):1451–1459.
  • Huang T, Liu Y, Zhang C. Pharmacokinetics and bioavailability enhancement of baicalin: a review. Eur J Drug Metab Pharmacokinet. 2019;44(2):159–168.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.