247
Views
3
CrossRef citations to date
0
Altmetric
Original Articles

Uric acid can enhance MAPK pathway-mediated proliferation in rat primary vascular smooth muscle cells via controlling of mitochondria and caspase-dependent cell death

ORCID Icon, &
Pages 293-301 | Received 12 Feb 2021, Accepted 12 May 2021, Published online: 30 May 2021

References

  • Maiuolo J, Oppedisano F, Gratteri S, et al. Regulation of uric acid metabolism and excretion. Int J Cardiol. 2016;213:8–14.
  • Mandal AK, Mount DB. The molecular physiology of uric acid homeostasis. Annu Rev Physiol. 2015;77:323–345.
  • Johnson RJ, Bakris GL, Borghi C, et al. Hyperuricemia, acute and chronic kidney disease, hypertension, and cardiovascular disease: report of a scientific workshop organized by the National Kidney Foundation. Am J Kidney Dis. 2018;71(6):851–865.
  • Chaudhary K, Malhotra K, Sowers J, et al. Uric acid-key ingredient in the recipe for cardiorenal metabolic syndrome. Cardiorenal Med. 2013;3(3):208–220.
  • Moulin-Mares SR, Zaniqueli D, Oliosa PR, et al. Uric acid reference values: report on 1750 healthy Brazilian children and adolescents. Pediatr Res. 2020;2020:1–6.
  • de Souza S, Reuter CP, Andersen LB, et al. Metabolic risk associated with liver enzymes, uric acid, and hemoglobin in adolescents. Pediatr Res. 2020;88(6):945–949.
  • Cardoso AS, Gonzaga NC, Medeiros CC, et al. Association of uric acid levels with components of metabolic syndrome and non-alcoholic fatty liver disease in overweight or obese children and adolescents. Jornal de Pediatria. 2013;89(4):412–418.
  • El Din UAS, Salem MM, Abdulazim DO. Uric acid in the pathogenesis of metabolic, renal, and cardiovascular diseases: a review. J Adv Res. 2017;8(5):537–548.
  • Huang X-B, Zhang W-Q, Tang W-W, et al. Prevalence and associated factors of hyperuricemia among urban adults aged 35–79 years in southwestern China: a community-based cross-sectional study. Sci Rep. 2020;10(1):1–7.
  • Yang Q, Lu Y, Deng Y, et al. Homocysteine level is positively and independently associated with serum creatinine and urea nitrogen levels in old male patients with hypertension. Sci Rep. 2020;10(1):1–9.
  • Takase H, Kimura G, Dohi Y. Uric acid levels predict future blood pressure and new onset hypertension in the general Japanese population. J Hum Hypertens. 2014;28(9):529–534.
  • Shankar A, Klein R, Klein B, et al. The association between serum uric acid level and long-term incidence of hypertension: population-based cohort study. J Hum Hypertens. 2006;20(12):937–945.
  • South AM, Shaltout HA, Nixon PA, et al. Association of circulating uric acid and angiotensin-(1–7) in relation to higher blood pressure in adolescents and the influence of preterm birth. J Hum Hypertens. 2020;34(12):818–825.
  • Kurata A, Shigematsu Y, Higaki J. Sex-related differences in relations of uric acid to left ventricular hypertrophy and remodeling in Japanese hypertensive patients. Hypertens Res. 2005;28(2):133–139.
  • Lu Z, Dong B, Wu H, et al. Serum uric acid level in primary hypertension among Chinese nonagenarians/centenarians. J Hum Hypertens. 2009;23(2):113–121.
  • Cannon PJ, Stason WB, Demartini FE, et al. Hyperuricemia in primary and renal hypertension. New Eng J Med. 1966;275(9):457–464.
  • Johnson RJ, Feig DI, Herrera-Acosta J, et al. Resurrection of uric acid as a causal risk factor in essential hypertension. Am Heart Assoc. 2005;45(1):18–20.
  • Johnson RJ, Kang D-H, Feig D, et al. Is there a pathogenetic role for uric acid in hypertension and cardiovascular and renal disease? Hypertension. 2003;41(6):1183–1190.
  • Tang L, Xu Y, Wei Y, et al. Uric acid induces the expression of TNF‑α via the ROS‑MAPK‑NF‑κB signaling pathway in rat vascular smooth muscle cells. Mol Med Rep. 2017;16(5):6928–6933.
  • Hu D, Yin C, Luo S, et al. Vascular smooth muscle cells contribute to atherosclerosis immunity. Front Immunol. 2019;10:1101.
  • Li H, Qian F, Liu H, et al. Elevated uric acid levels promote vascular smooth muscle cells (VSMC) proliferation via an NOD-like receptor protein 3 (NLRP3)-inflammasome-dependent mechanism. Med Sci Monit. 2019;25:8457.
  • Kanellis J, Watanabe S, Li JH, et al. Uric acid stimulates monocyte chemoattractant protein-1 production in vascular smooth muscle cells via mitogen-activated protein kinase and cyclooxygenase-2. Hypertension. 2003;41(6):1287–1293.
  • Corry DB, Eslami P, Yamamoto K, et al. Uric acid stimulates vascular smooth muscle cell proliferation and oxidative stress via the vascular renin–angiotensin system. J Hypertens. 2008;26(2):269–275.
  • Kang D-H, Han L, Ouyang X, et al. Uric acid causes vascular smooth muscle cell proliferation by entering cells via a functional urate transporter. Am J Nephrol. 2005;25(5):425–433.
  • Rao GN, Corson MA, Berk BC. Uric acid stimulates vascular smooth muscle cell proliferation by increasing platelet-derived growth factor A-chain expression. J Biol Chem. 1991;266(13):8604–8608.
  • Kırça M, Oğuz N, Çetin A, et al. Uric acid stimulates proliferative pathways in vascular smooth muscle cells through the activation of p38 MAPK, p44/42 MAPK and PDGFRβ. J Recept Signal Transduct. 2017;37(2):167–173.
  • Watanabe S, Kang D-H, Feng L, et al. Uric acid, hominoid evolution, and the pathogenesis of salt-sensitivity. Hypertension. 2002;40(3):355–360.
  • Wang J, Chen H, Cao P, et al. Inflammatory cytokines induce caveolin‐1/β‐catenin signalling in rat nucleus pulposus cell apoptosis through the p38 MAPK pathway. Cell Prolif. 2016;49(3):362–372.
  • Sugiura R, Satoh R, Ishiwata S, et al. Role of RNA-binding proteins in MAPK signal transduction pathway. J Signal Transduct. 2011;2011:109746.
  • Yue J, López JM. Understanding MAPK signaling pathways in apoptosis. Int J Mol Sci. 2020;21(7):2346.
  • Verzola D, Ratto E, Villaggio B, et al. Uric acid promotes apoptosis in human proximal tubule cells by oxidative stress and the activation of NADPH oxidase NOX 4. PLoS One. 2014;9(12):e115210.
  • Song C, Zhao X. Uric acid promotes oxidative stress and enhances vascular endothelial cell apoptosis in rats with middle cerebral artery occlusion. Biosci Rep. 2018;38(3):BSR20170939.
  • Li Z, Sheng Y, Liu C, et al. Nox4 has a crucial role in uric acid‑induced oxidative stress and apoptosis in renal tubular cells. Mol Med Rep. 2016;13(5):4343–4348.
  • Yan B, Liu D, Zhu J, et al. The effects of hyperuricemia on the differentiation and proliferation of osteoblasts and vascular smooth muscle cells are implicated in the elevated risk of osteopenia and vascular calcification in gout: an in vivo and in vitro analysis. J Cell Biochem. 2019;120(12):19660–19672.
  • Romi MM, Arfian N, Tranggono U, et al. Uric acid causes kidney injury through inducing fibroblast expansion, Endothelin-1 expression, and inflammation. BMC Nephrol. 2017;18(1):1–8.
  • Chen M, Lu X, Lu C, et al. Soluble uric acid increases PDZK1 and ABCG2 expression in human intestinal cell lines via the TLR4-NLRP3 inflammasome and PI3K/Akt signaling pathway. Arthritis Res Ther. 2018;20(1):1–12.
  • Li P, Zhang L, Zhang M, et al. Uric acid enhances PKC-dependent eNOS phosphorylation and mediates cellular ER stress: a mechanism for uric acid-induced endothelial dysfunction. Int J Mol Med. 2016;37(4):989–997.
  • Gunther S, Alexander RW, Atkinson WJ, et al. Functional angiotensin II receptors in cultured vascular smooth muscle cells. J Cell Biol. 1982;92(2):289–298.
  • Çetin A, Öztürk OH, Tokay A, et al. Angiotensin II-induced MAPK phosphorylation mediated by Ras and/or phospholipase C-dependent phosphorylations but not by protein kinase C phosphorylation in cultured rat vascular smooth muscle cells. Pharmacology. 2007;79(1):27–33.
  • Oğuz N, Kırça M, Çetin A, et al. Effect of uric acid on inflammatory COX-2 and ROS pathways in vascular smooth muscle cells. J Recept Signal Transduct. 2017;37(5):500–505.
  • Seger R, Krebs EG. The MAPK signaling cascade. FASEB J. 1995;9(9):726–735.
  • Wada T, Penninger JM. Mitogen-activated protein kinases in apoptosis regulation. Oncogene. 2004;23(16):2838–2849.
  • Llambi F, Moldoveanu T, Tait SW, et al. A unified model of mammalian BCL-2 protein family interactions at the mitochondria. Molecular Cell. 2011;44(4):517–531.
  • Owens GK. Regulation of differentiation of vascular smooth muscle cells. Physiol Rev. 1995;75(3):487–517.
  • Van Varik B, Rennenberg R, Reutelingsperger C, et al. Mechanisms of arterial remodeling: lessons from genetic diseases. Front Genet. 2012;3:290.
  • Clément M, Chappell J, Raffort J, et al. Vascular smooth muscle cell plasticity and autophagy in dissecting aortic aneurysms. Arterioscler Thromb Vasc Biol. 2019;39(6):1149–1159.
  • Henderson EL, Geng Y-J, Sukhova GK, et al. Death of smooth muscle cells and expression of mediators of apoptosis by T lymphocytes in human abdominal aortic aneurysms. Circulation. 1999;99(1):96–104.
  • Alexander MR, Owens GK. Epigenetic control of smooth muscle cell differentiation and phenotypic switching in vascular development and disease. Annu Rev Physiol. 2012;74:13–40.
  • Basatemur GL, Jørgensen HF, Clarke MC, et al. Vascular smooth muscle cells in atherosclerosis. Nat Rev Cardiol. 2019;16(12):727–744.
  • Kim SY, Guevara JP, Kim KM, et al. Hyperuricemia and risk of stroke: a systematic review and meta‐analysis. Arthrit Care Res. 2009;61(7):885–892.
  • Mazzali M, Hughes J, Kim Y-G, et al. Elevated uric acid increases blood pressure in the rat by a novel crystal-independent mechanism. hypertension. 2001;38(5):1101–1106.
  • Mazzali M, Kanellis J, Han L, et al. Hyperuricemia induces a primary renal arteriolopathy in rats by a blood pressure-independent mechanism. Am J Physiol-Renal Physiol. 2002;282(6):F991–F997.
  • Nakagawa T, Mazzali M, Kang D-H, et al. Hyperuricemia causes glomerular hypertrophy in the rat. Am J Nephrol. 2003;23(1):2–7.
  • Ruggiero C, Cherubini A, Ble A, et al. Uric acid and inflammatory markers. Euro Heart J. 2006;27(10):1174–1181.
  • Sánchez-Lozada LG, Tapia E, Avila-Casado C, et al. Mild hyperuricemia induces glomerular hypertension in normal rats. Am J Physiol-Renal Physiol. 2002;283(5):F1105–F1110.
  • Gaffo AL, Edwards NL, Saag KG. Gout. Hyperuricemia and cardiovascular disease: how strong is the evidence for a causal link? Arthritis Res Ther. 2009;11(4):240–247.
  • Kang D-H, Nakagawa T, Feng L, et al. A role for uric acid in the progression of renal disease. J Am Soc Nephrol. 2002;13(12):2888–2897.
  • Wagner EF, Nebreda ÁR. Signal integration by JNK and p38 MAPK pathways in cancer development. Nat Rev Cancer. 2009;9(8):537–549.
  • Sun Y, Liu W-Z, Liu T, et al. Signaling pathway of MAPK/ERK in cell proliferation, differentiation, migration, senescence and apoptosis. J Recept Signal Transduction. 2015;35(6):600–604.
  • Selim KA, Abdelrasoul H, Aboelmagd M, et al. The role of the MAPK signaling, topoisomerase and dietary bioactives in controlling cancer incidence. Diseases. 2017;5(2):13.
  • Chang L, Karin M. Mammalian MAP kinase signalling cascades. Nature. 2001;410(6824):37–40.
  • Zhang BF, Jiang H, Chen J, et al. KDM3A inhibition attenuates high concentration insulin‑induced vascular smooth muscle cell injury by suppressing MAPK/NF‑κB pathways. Int J Mol Med. 2018;41(3):1265–1274.
  • Lee G-L, Wu J-Y, Tsai C-S, et al. TLR4-activated MAPK-IL-6 axis regulates vascular smooth muscle cell function. Int J Mol Sci. 2016;17(9):1394.
  • Park HS, Quan KT, Han JH, et al. Rubiarbonone C inhibits platelet‐derived growth factor‐induced proliferation and migration of vascular smooth muscle cells through the focal adhesion kinase, MAPK and STAT3 Tyr705 signalling pathways. Br J Pharmacol. 2017;174(22):4140–4154.
  • Wang Y, Zhang X, Gao L, et al. Cortistatin exerts antiproliferation and antimigration effects in vascular smooth muscle cells stimulated by Ang II through suppressing ERK1/2, p38 MAPK, JNK and ERK5 signaling pathways. Ann Transl Med. 2019;7(20):561–561.
  • Vendrov AE, Sumida A, Canugovi C, et al. NOXA1-dependent NADPH oxidase regulates redox signaling and phenotype of vascular smooth muscle cell during atherogenesis. Redox Biol. 2019;21:101063.
  • Zhang L, Zhang Y, Wu Y, et al. Role of the balance of Akt and MAPK pathways in the exercise-regulated phenotype switching in spontaneously hypertensive rats. Int J Mol Sci. 2019;20(22):5690.
  • Bock FJ, Tait SW. Mitochondria as multifaceted regulators of cell death. Nat Rev Mol Cell Biol. 2020;21(2):85–100.
  • Raudenská M, Balvan J, Masařík M. Cell death in head and neck cancer pathogenesis and treatment. Cell Death Dis. 2021;12(2):1–17.
  • Ping S, Li Y, Liu S, et al. Simultaneous increases in proliferation and apoptosis of vascular smooth muscle cells accelerate diabetic mouse venous atherosclerosis. PLoS One. 2015;10(10):e0141375.
  • Kale J, Osterlund EJ, Andrews DW. BCL-2 family proteins: changing partners in the dance towards death. Cell Death Differ. 2018;25(1):65–80.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.