212
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

PPARγ activation by pioglitazone enhances the anti-proliferative effects of doxorubicin on pro-monocytic THP-1 leukemia cells via inducing apoptosis and G2/M cell cycle arrest

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 429-438 | Received 02 Sep 2021, Accepted 30 Sep 2021, Published online: 13 Oct 2021

References

  • Pandya BJ, Chen C-C, Medeiros BC, et al. Economic and clinical burden of relapsed and/or refractory active treatment episodes in patients with acute myeloid leukemia (AML) in the USA: a retrospective analysis of a commercial payer database. Adv Ther. 2019;36(8):1922–1935.
  • Azadpour M, Karimian M, Kheirandish MH, et al. Evaluating cytotoxic effects of recombinant fragaceatoxin C pore forming toxin against AML cell lines. Iran J Basic Med Sci. 2018;21(9):878–883.
  • Lonetti A, Pession A, Masetti R. Targeted therapies for pediatric AML: gaps and perspective. Front Pediatr. 2019;7:463.
  • Büchner T, Berdel WE, Wörmann B, et al. Treatment of older patients with AML. Crit Rev Oncol Hematol. 2005;56(2):247–259.
  • Perl AE. The role of targeted therapy in the management of patients with AML. Blood Adv. 2017;1(24):2281–2294.
  • Shaffer BC, Gillet J-P, Patel C, et al. Drug resistance: still a daunting challenge to the successful treatment of AML. Drug Resist Updat. 2012;15(1–2):62–69.
  • Ishikawa F, Yoshida S, Saito Y, et al. Chemotherapy-resistant human AML stem cells home to and engraft within the bone-marrow endosteal region. Nat Biotechnol. 2007;25(11):1315–1321.
  • Housman G, Byler S, Heerboth S, et al. Drug resistance in cancer: an overview. Cancers. 2014;6(3):1769–1792.
  • Yardley DA. Drug resistance and the role of combination chemotherapy in improving patient outcomes. Int J Breast Cancer. 2013;2013:137414.
  • Marusyk A, Janiszewska M, Polyak K. Intratumor heterogeneity: the rosetta stone of therapy resistance. Cancer Cell. 2020;37(4):471–484.
  • Melillo L, Valente D, D’Arena G, et al. Combination treatment of flag with non-pegylated liposomal doxorubicin (MYOCET(TM)) in elderly patients with acute myeloid leukemia: a single center experience. Int J Immunopathol Pharmacol. 2011;24(3):703–709.
  • Wu D, Pusuluri A, Vogus D, et al. Design principles of drug combinations for chemotherapy. J Control Release. 2020;323:36–46.
  • Mahbub A, Le Maitre C, Haywood-Small S, et al. Polyphenols act synergistically with doxorubicin and etoposide in leukaemia cell lines. Cell Death Discov. 2015;1(1):1–12.
  • Tacar O, Sriamornsak P, Dass CR. Doxorubicin: an update on anticancer molecular action, toxicity and novel drug delivery systems. J Pharm Pharmacol. 2013;65(2):157–170.
  • Carvalho C, Santos RX, Cardoso S, et al. Doxorubicin: the good, the bad and the ugly effect. Curr Med Chem. 2009;16(25):3267–3285.
  • Mohan A, Narayanan S, Sethuraman S, et al. Combinations of plant polyphenols & anti-cancer molecules: a novel treatment strategy for cancer chemotherapy. Anticancer Agents Med Chem. 2013;13(2):281–295.
  • Negrette-Guzmán M. Combinations of the antioxidants sulforaphane or curcumin and the conventional antineoplastics cisplatin or doxorubicin as prospects for anticancer chemotherapy. Eur J Pharmacol. 2019;859:172513.
  • Hii L-W, Chung FF-L, Soo JS-S, et al. Histone deacetylase (HDAC) inhibitors and doxorubicin combinations target both breast cancer stem cells and non-stem breast cancer cells simultaneously. Breast Cancer Res Treat. 2020;179(3):615–629.
  • Zhang Y, Yang C, Wang W, et al. Co-delivery of doxorubicin and curcumin by pH-sensitive prodrug nanoparticle for combination therapy of cancer. Sci Rep. 2016;6(1):21225.
  • Li H, Krstin S, Wang S, et al. Capsaicin and piperine can overcome multidrug resistance in cancer cells to doxorubicin. Molecules. 2018;23(3):557.
  • DeFronzo RA, Inzucchi S, Abdul-Ghani M, et al. Pioglitazone: the forgotten, cost-effective cardioprotective drug for type 2 diabetes. Diab Vasc Dis Res. 2019;16(2):133–143.
  • Piątkowska-Chmiel I, Gawrońska-Grzywacz M, Natorska-Chomicka D, et al. Pioglitazone as a modulator of the chemoresistance of renal cell adenocarcinoma to methotrexate. Oncol Rep. 2020;43(3):1019–1030.
  • Saito M, Fujita Y, Kuribayashi N, et al. Troglitazone, a selective ligand for PPARγ, induces cell-cycle arrest in human oral SCC cells. Anticancer Res. 2020;40(3):1247–1254.
  • Rousselot P, Prost S, Guilhot J, et al. Pioglitazone together with imatinib in chronic myeloid leukemia: a proof of concept study. Cancer. 2017;123(10):1791–1799.
  • Ghadiany M, Tabarraee M, Salari S, et al. Adding oral pioglitazone to standard induction chemotherapy of acute myeloid leukemia: a randomized clinical trial. Clin Lymphoma Myeloma Leuk. 2019;19(4):206–212.
  • Saiki M, Hatta Y, Yamazaki T, et al. Pioglitazone inhibits the growth of human leukemia cell lines and primary leukemia cells while sparing normal hematopoietic stem cells. Int J Oncol. 2006;29(2):437–443.
  • Jazi MS, Mohammadi S, Yazdani Y, et al. Effects of valproic acid and pioglitazone on cell cycle progression and proliferation of T-cell acute lymphoblastic leukemia Jurkat cells. Iran J Basic Med Sci. 2016;19(7):779.
  • Bodles AM, Varma V, Yao-Borengasser A, et al. Pioglitazone induces apoptosis of macrophages in human adipose tissue. J Lipid Res. 2006;47(9):2080–2088.
  • Mohammadi S, Seyedhosseini FS, Behnampour N, et al. Indole-3-carbinol induces G1 cell cycle arrest and apoptosis through aryl hydrocarbon receptor in THP-1 monocytic cell line. J Recept Signal Transduct Res. 2017;37(5):506–514.
  • Mohammadi S, Saghaeian-Jazi M, Sedighi S, et al. Sodium valproate modulates immune response by alternative activation of monocyte-derived macrophages in systemic lupus erythematosus. Clin Rheumatol. 2018;37(3):719–727.
  • Dana N, Vaseghi G, Haghjooy Javanmard S. PPAR γ agonist, pioglitazone, suppresses melanoma cancer in mice by inhibiting TLR4 signaling. J Pharm Pharm Sci. 2019;22(1):418–423.
  • Higuchi T, Sugisawa N, Miyake K, et al. Pioglitazone, an agonist of PPARγ, reverses doxorubicin-resistance in an osteosarcoma patient-derived orthotopic xenograft model by downregulating P-glycoprotein expression. Biomed Pharmacother. 2019;118:109356.
  • Jiao X, Lin S, Lian S, et al. The inhibition of the breast cancer by PPARγ agonist pioglitazone through JAK2/STAT3 pathway. Neoplasma. 2020;67(4):834–842.
  • Kiran AV, Kumari GK, Krishnamurthy PT. Preliminary evaluation of anticancer efficacy of pioglitazone combined with celecoxib for the treatment of non-small cell lung cancer. Invest New Drugs. 2021;1–9.
  • Higuchi T, Yamamoto J, Sugisawa N, et al. PPARγ agonist pioglitazone in combination with cisplatinum arrests a chemotherapy-resistant osteosarcoma PDOX model. Cancer Genomics Proteomics. 2020;17(1):35–40.
  • Ciaramella V, Sasso FC, Di Liello R, et al. Activity and molecular targets of pioglitazone via blockade of proliferation, invasiveness and bioenergetics in human NSCLC. J Exp Clin Cancer Res. 2019;38(1):1–13.
  • Kumari GK, Kiran AVR, Krishnamurthy PT. Preliminary evaluation on the beneficial effects of pioglitazone in the treatment of endometrial cancer. Med Oncol. 2021;38(6):1–9.
  • Ozdemir Kutbay N, Biray Avci C, Sarer Yurekli B, et al. Effects of metformin and pioglitazone combination on apoptosis and AMPK/mTOR signaling pathway in human anaplastic thyroid cancer cells. J Biochem Mol Toxicol. 2020;34(10):e22547.
  • Esmaeili S, Safaroghli-Azar A, Pourbagheri-Sigaroodi A, et al. Stimulation of peroxisome proliferator-activated receptor-gamma (PPARγ) using pioglitazone decreases the survival of acute promyelocytic leukemia cells through up-regulation of PTEN expression. Anti-Cancer Agents Med Chem. 2021;21(1):108–119.
  • Hatta Y, Saiki M, Enomoto Y, et al. Pioglitazone inhibits the growth of human leukemic cell lines and primary leukemic cells in vitro. Am Soc Hematol. 2004;104(11):4493.
  • Manna SK, Gangadharan C, Edupalli D, et al. Ras puts the brake on doxorubicin-mediated cell death in p53-expressing cells. J Biol Chem. 2011;286(9):7339–7347.
  • Sadeghi-Aliabadi H, Minaiyan M, Dabestan A. Cytotoxic evaluation of doxorubicin in combination with simvastatin against human cancer cells. Res Pharm Sci. 2010;5(2):127–133.
  • Tomankova K, Polakova K, Pizova K, et al. In vitro cytotoxicity analysis of doxorubicin-loaded/superparamagnetic iron oxide colloidal nanoassemblies on MCF7 and NIH3T3 cell lines. Int J Nanomedicine. 2015;10:949–961.
  • Parveen S, Sahoo SK. Evaluation of cytotoxicity and mechanism of apoptosis of doxorubicin using folate-decorated chitosan nanoparticles for targeted delivery to retinoblastoma. Cancer Nanotechnol. 2010;1(1–6):47–62.
  • Ling Y-H, El-Naggar AK, Priebe W, et al. Cell cycle-dependent cytotoxicity, G2/M phase arrest, and disruption of p34cdc2/cyclin B1 activity induced by doxorubicin in synchronized P388 cells. Mol Pharmacol. 1996;49(5):832–841.
  • Venkatakrishnan C, Dunsmore K, Wong H, et al. HSP27 regulates p53 transcriptional activity in doxorubicin-treated fibroblasts and cardiac H9c2 cells: p21 upregulation and G2/M phase cell cycle arrest. Am J Physiol Heart Circ Physiol. 2008;294(4):H1736–H1744.
  • Tyagi AK, Singh RP, Agarwal C, et al. Silibinin strongly synergizes human prostate carcinoma DU145 cells to doxorubicin-induced growth inhibition, G2-M arrest, and apoptosis. Clin Cancer Res. 2002;8(11):3512–3519.
  • O'Loughlin C, Heenan M, Coyle S, et al. Altered cell cycle response of drug-resistant lung carcinoma cells to doxorubicin. Eur J Cancer. 2000;36(9):1149–1160.
  • Lüpertz R, Wätjen W, Kahl R, et al. Dose- and time-dependent effects of doxorubicin on cytotoxicity, cell cycle and apoptotic cell death in human colon cancer cells. Toxicology. 2010;271(3):115–121.
  • Sun M, Zhang N, Wang X, et al. Nitidine chloride induces apoptosis, cell cycle arrest, and synergistic cytotoxicity with doxorubicin in breast cancer cells. Tumour Biol. 2014;35(10):10201–10212.
  • Atashpour S, Fouladdel S, Movahhed TK, et al. Quercetin induces cell cycle arrest and apoptosis in CD133. + Cancer stem cells of human colorectal HT29 cancer cell line and enhances anticancer effects of doxorubicin. Iran J Basic Med Sci. 2015;18(7):635–643.
  • Sliwinska MA, Mosieniak G, Wolanin K, et al. Induction of senescence with doxorubicin leads to increased genomic instability of HCT116 cells. Mech Ageing Dev. 2009;130(1–2):24–32.
  • Castedo M, Perfettini J-L, Roumier T, et al. Mitotic catastrophe constitutes a special case of apoptosis whose suppression entails aneuploidy. Oncogene. 2004;23(25):4362–4370.
  • Fan L-L, Sun G-P, Wei W, et al. Melatonin and doxorubicin synergistically induce cell apoptosis in human hepatoma cell lines. World J Gastroenterol. 2010;16(12):1473–1481.
  • Lee T, Lau T, Ng I. Doxorubicin-induced apoptosis and chemosensitivity in hepatoma cell lines. Cancer Chemother Pharmacol. 2002;49(1):78–86.
  • Tambe P, Kumar P, Paknikar KM, et al. Decapeptide functionalized targeted mesoporous silica nanoparticles with doxorubicin exhibit enhanced apoptotic effect in breast and prostate cancer cells. IJN. 2018;13:7669–7680.
  • Nurhayati IP, Khumaira A, Ilmawati GPN, et al. Cytotoxic and antimetastatic activity of hesperetin and doxorubicin combination toward Her2 expressing breast cancer cells. Asian Pac J Cancer Prev. 2020;21(5):1259–1267.
  • Tsubaki M, Takeda T, Tomonari Y, et al. Pioglitazone inhibits cancer cell growth through STAT3 inhibition and enhanced AIF expression via a PPARγ-independent pathway. J Cell Physiol. 2018;233(4):3638–3647.
  • Alamdar N, Baghaei K, Farivar S, Hamidieh AA, Saltanatpour Z. Study of the effect of pioglitazone and cetuximab on cancer stem-like cellsenriched HT29 cell line. 2021. DOI:10.21203/rs.3.rs-519047/v1
  • Gurunathan S, Jeyaraj M, Kang M-H, et al. Tangeretin-assisted platinum nanoparticles enhance the apoptotic properties of doxorubicin: combination therapy for osteosarcoma treatment. Nanomaterials. 2019;9(8):1089.
  • Firouzi Amoodizaj F, Baghaeifar S, Taheri E, et al. Enhanced anticancer potency of doxorubicin in combination with curcumin in gastric adenocarcinoma. J Biochem Mol Toxicol. 2020;34(6):e22486.
  • Safa M, Tavasoli B, Manafi R, et al. Indole-3-carbinol suppresses NF-κB activity and stimulates the p53 pathway in pre-B acute lymphoblastic leukemia cells. Tumour Biol. 2015;36(5):3919–3930.
  • Chinni SR, Li Y, Upadhyay S, et al. Indole-3-carbinol (I3C) induced cell growth inhibition, G1 cell cycle arrest and apoptosis in prostate cancer cells. Oncogene. 2001;20(23):2927–2936.
  • Kolluri SK, Weiss C, Koff A, et al. p27(Kip1) induction and inhibition of proliferation by the intracellular Ah receptor in developing thymus and hepatoma cells. Genes Dev. 1999;13(13):1742–1753.
  • Hinterleitner C, Huelsenbeck J, Henninger C, et al. Rac1 signaling protects monocytic AML cells expressing the MLL-AF9 oncogene from caspase-mediated apoptotic death. Apoptosis. 2013;18(8):963–979.
  • Yoo G, Allred CD. The estrogenic effect of trigonelline and 3,3-diindolymethane on cell growth in non-malignant colonocytes. Food Chem Toxicol. 2016;87:23–30.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.