243
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Estrogen receptors as potential therapeutic target in endometrial cancer

, , &
Pages 19-26 | Received 16 Aug 2022, Accepted 07 Feb 2023, Published online: 08 Mar 2023

References

  • Meyer MR, Clegg DJ, Prossnitz ER, et al. Obesity, insulin resistance and diabetes: sex differences and role of oestrogen receptors. Acta Physiol. 2011;203(1):259–269.
  • Barton M. Cholesterol and atherosclerosis: modulation by oestrogen. Curr Opin Lipidol. 2013;24(3):214–220.
  • Arevalo MA, Azcoitia I, Garcia-Segura LM. The neuroprotective actions of oestradiol and oestrogen receptors. Nat Rev Neurosci. 2015;16(1):17–29.
  • Roberts H, Hickey M. Managing the menopause: an update. Maturitas. 2016;86:53–58.
  • Jensen EV, Jordan VC. The estrogen receptor: a model for molecular medicine. Clin Cancer Res. 2003;9(6):1980–1989.
  • Benagiano G, Bastianelli C, Farris M. Contraception today. Ann N Y Acad Sci. 2006;1092(1):1–32.
  • Deroo BJ, Korach KS. Estrogen receptors and human disease. J Clin Invest. 2006;116(3):561–570.
  • Jia M, Dahlman-Wright K, Gustafsson JÅ. Estrogen receptor alpha and beta in health and disease. Best Pract Res Clin Endocrinol Metab. 2015;29(4):557–568.
  • Filardo EJ, Quinn JA, Bland KI, et al. Estrogen-induced activation of erk-1 and erk-2 requires the G protein-coupled receptor homolog, GPR30, and occurs via trans-activation of the epidermal growth factor receptor through release of HB-EGF. Mol Endocrinol. 2000;14(10):1649–1660.
  • Leslie KK, Thiel KW, Goodheart MJ, et al. Endometrial cancer. Obstet Gynecol Clin North Am. 2012;39(2):255–268.
  • Prossnitz ER, Barton M. Estrogen biology: new insights into GPER function and clinical opportunities. Mol Cell Endocrinol. 2014;389(1-2):71–83.
  • Vivacqua A, Bonofiglio D, Recchia AG, et al. The G protein-coupled receptor GPR30 mediates the proliferative effects induced by 17β-estradiol and hydroxytamoxifen in endometrial cancer cells. Mol Endocrinol. 2006;20(3):631–646.
  • Rodriguez AC, Blanchard Z, Maurer KA, et al. Estrogen signaling in endometrial cancer: a key oncogenic pathway with several open questions. Horm Cancer. 2019;10(2-3):51–63.
  • Xu S, Yu S, Dong D, et al. G protein-coupled estrogen receptor: a potential therapeutic target in cancer. Front Endocrinol. 2019;10:725.
  • Droog M, Nevedomskaya E, Dackus GM, et al. Estrogen receptor α wields treatment-specific enhancers between morphologically similar endometrial tumors. Proc Natl Acad Sci U S A. 2017;114(8):E1316–E1325.
  • Groothuis PG, Dassen HH, Romano A, et al. Estrogen and the endometrium: lessons learned from gene expression profiling in rodents and human. Hum Reprod Update. 2007;13(4):405–417.
  • Reed BG, Carr BR. The normal menstrual cycle and the control of ovulation. South Dartmouth, MA: MDText.com, Inc; 2015.
  • Mesen TB, Young SL. Progesterone and the luteal phase: a requisite to reproduction. Obstet Gynecol Clin North Am. 2015;42(1):135–151.
  • National Cancer Institute. SEER Cancer Stat Facts: Uterine cancer. Bethesda, Maryland: National Cancer Institute. Available from: https://seer.cancer.gov/statfacts/html/corp.html. Accessed Oct 2018.
  • Carlson MJ, Thiel KW, Leslie KK. Past, present, and future of hormonal therapy in recurrent endometrial cancer. Int J Womens Health. 2014;6:429.
  • Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394–424.
  • Shen F, Gao Y, Ding J, et al. Is the positivity of estrogen receptor or progesterone receptor different between type 1 and type 2 endometrial cancer? Oncotarget. 2017;8(1):506–511.
  • Petrie WK, Dennis MK, Hu C, et al. G protein-coupled estrogen receptor-selective ligands modulate endometrial tumor growth. Obst Gynecol Int. 2013;2013:1–17.
  • Ma X, Ma CX, Wang J. Endometrial carcinogenesis and molecular signaling pathways. AJMB. 2014;04(03):134–149.
  • Setiawan VW, Yang HP, Pike MC, Australian National Endometrial Cancer Study Group, et al. Type I and II endometrial cancers: have they different risk factors? J Clin Oncol. 2013;31(20):2607–2618.
  • Kandoth C, Schultz N, Cherniack AD, et al. Cancer genome atlas research N. Integrated genomic characterization of endometrial carcinoma. Nature. 2013;497(7447):67–73.
  • Hewitt SC, Korach KS. Estrogen receptors: structure, mechanisms and function. Rev Endocr Metab Disord. 2002;3(3):193–200.
  • Pietras RJ, Szego CM. Specific binding sites for oestrogen at the outer surfaces of isolated endometrial cells. Nature 1977;265(5589):69–72.
  • Kumar V, Chambon P. The estrogen receptor binds tightly to its responsive element as a ligand-induced homodimer. Cell 1988;55(1):145–156.
  • Joseph R, Orlov YL, Huss M, et al. Integrative model of genomic factors for determining binding site selection by estrogen receptor-α. Mol Syst Biol. 2010;6:456.
  • Krishnan V, Wang X, Safe S. Estrogen receptor-Sp1 complexes mediate estrogen-induced cathepsin D gene expression in MCF-7 human breast cancer cells. J Biol Chem. 1994;269(22):15912–15917.
  • Safe S, Kim K. Nonclassical genomic ER/Sp and ER/AP-1 signaling pathways. J Mol Endocrinol. 2008;41(5):263–275.
  • Coons LA, Hewitt SC, Burkholder AB, et al. DNA sequence constraints define functionally active steroid nuclear receptor binding sites in chromatin. Endocrinology 2017;158(10):3212–3234.
  • Hah N, Murakami S, Nagari A, et al. Enhancer transcripts mark active estrogen receptor binding sites. Genome Res. 2013;23(8):1210–1223.
  • Carleton JB, Berrett KC, Gertz J. Multiplex enhancer interference reveals collaborative control of gene regulation by estrogen receptor α-bound enhancers. Cell Syst. 2017;5(4):333–344.e5.
  • Carleton JB, Berrett KC, Gertz J. Dissection of enhancer function using multiplex CRISPR-based enhancer interference in cell lines. J Vis Exp. 2018;(136):e57883.
  • Droog M, Nevedomskaya E, Kim Y, et al. Comparative cistromics reveals genomic cross-talk between FOXA1 and ERα in tamoxifen-associated endometrial carcinomas. Cancer Res. 2016;76(13):3773–3784.
  • Métivier R, Penot G, Flouriot G, et al. Synergism between ERα transactivation function 1 (AF-1) and AF-2 mediated by steroid receptor coactivator protein-1: requirement for the AF-1 α-helical core and for a direct interaction between the N-and C-terminal domains. Mol Endocrinol. 2001;15(11):1953–1970.
  • Raglan O, Kalliala I, Markozannes G, et al. Risk factors for endometrial cancer: an umbrella review of the literature. Int J Cancer. 2019;145(7):1719–1730.
  • Cleland WH, Mendelson CR, Simpson ER. Aromatase activity of membrane fractions of human adipose tissue stromal cells and adipocytes. Endocrinology. 1983;113(6):2155–2160.
  • Giviziez CR, Sanchez EG, Approbato MS, et al. Obesity and anovulatory infertility: a review. JBRA Assist Reprod. 2016;20(4):240–245.
  • Daniilidis A, Dinas K. Long term health consequences of polycystic ovarian syndrome: a review analysis. Hippokratia. 2009;13(2):90.
  • Dinkelspiel HE, Wright JD, Lewin SN, et al. Contemporary clinical management of endometrial cancer. Obstet Gynecol Intl. 2013;2013:1–11.
  • Baker J, Obermair A, Gebski V, et al. Efficacy of oral or intrauterine device-delivered progestin in patients with complex endometrial hyperplasia with atypia or early endometrial adenocarcinoma: a meta-analysis and systematic review of the literature. Gynecol Oncol. 2012;125(1):263–270.
  • MacKay HJ, Freixinos VR, Fleming GF. Therapeutic targets and opportunities in endometrial cancer: update on endocrine therapy and nonimmunotherapy targeted options. Am Soc Clin Oncol Educ Book. 2020;40(40):245–255.
  • Carmeci C, Thompson DA, Ring HZ, et al. Identification of a gene (GPR30) with homology to the G-protein-coupled receptor superfamily associated with estrogen receptor expression in breast cancer. Genomics 1997;45(3):607–617.
  • Thomas P, Pang Y, Filardo EJ, et al. Identity of an estrogen membrane receptor coupled to a G protein in human breast cancer cells. Endocrinology 2005;146(2):624–632.
  • Revankar CM, Cimino DF, Sklar LA, et al. A transmembrane intracellular estrogen receptor mediates rapid cell signaling. Science. 2005;307(5715):1625–1630.
  • Filardo EJ. Epidermal growth factor receptor (EGFR) transactivation by estrogen via the G-protein-coupled receptor, GPR30: a novel signaling pathway with potential significance for breast cancer. J Steroid Biochem Mol Biol. 2002;80(2):231–238.
  • Zhang L, Li Y, Lan L, et al. Tamoxifen has a proliferative effect in endometrial carcinoma mediated via the GPER/EGFR/ERK/cyclin D1 pathway: a retrospective study and an in vitro study. Mol Cell Endocrinol. 2016;437:51–61.
  • He YY, Cai B, Yang YX, et al. Estrogenic G protein‐coupled receptor 30 signaling is involved in regulation of endometrial carcinoma by promoting proliferation, invasion potential, and interleukin‐6 secretion via the MEK/ERK mitogen‐activated protein kinase pathway. Cancer Sci. 2009;100(6):1051–1061.
  • Tsai CL, Wu HM, Lin CY, et al. Estradiol and tamoxifen induce cell migration through GPR30 and activation of focal adhesion kinase (FAK) in endometrial cancers with low or without nuclear estrogen receptor α (ERα). PLoS One. 2013;8(9):e72999.
  • Albitar L, Pickett G, Morgan M, et al. Models representing type I and type II human endometrial cancers: ishikawa H and Hec50co cells. Gynecol Oncol. 2007;106(1):52–64.
  • Wei Y, Zhang Z, Liao H, et al. Nuclear estrogen receptor-mediated notch signaling and GPR30-mediated PI3K/AKT signaling in the regulation of endometrial cancer cell proliferation. Oncol Rep. 2012;27(2):504–510.
  • Du GQ, Zhou L, Chen XY, et al. The G protein-coupled receptor GPR30 mediates the proliferative and invasive effects induced by hydroxytamoxifen in endometrial cancer cells. Biochem Biophys Res Commun. 2012;420(2):343–349.
  • Lin BC, Suzawa M, Blind RD, et al. Stimulating the GPR30 estrogen receptor with a novel tamoxifen analogue activates SF-1 and promotes endometrial cell proliferation. Cancer Res. 2009;69(13):5415–5423.
  • Prossnitz ER, Maggiolini M. Mechanisms of estrogen signaling and gene expression via GPR30. Mol Cell Endocrinol. 2009;308(1-2):32–38.
  • Prossnitz ER. GPER modulators: opportunity nox on the heels of a class akt. J Steroid Biochem Mol Biol. 2018;176:73–81.
  • Albanito L, Sisci D, Aquila S, et al. Epidermal growth factor induces G protein-coupled receptor 30 expression in estrogen receptor-negative breast cancer cells. Endocrinology. 2008;149(8):3799–3808.
  • Jung J. Role of G protein-coupled estrogen receptor in cancer progression. Toxicol Res. 2019;35(3):209–214.
  • Deng J, Wang W, Yu G, et al. MicroRNA-195 inhibits epithelial-mesenchymal transition by targeting G protein-coupled estrogen receptor 1 in endometrial carcinoma. Mol Med Rep. 2019;20(5):4023–4032.
  • De Marco P, Bartella V, Vivacqua A, et al. Insulin-like growth factor-I regulates GPER expression and function in cancer cells. Oncogene. 2013;32(6):678–688.
  • Li Y, Jia Y, Bian Y, et al. Autocrine motility factor promotes endometrial cancer progression by targeting GPER-1. Cell Commun Signal. 2019;17(1):1–4.
  • Ososki AL, Kennelly EJ. Phytoestrogens: a review of the present state of research. Phytother Res. 2003; Sep17(8):845–869.
  • Singleton DW, Khan SA. Xenoestrogen exposure and mechanisms of endocrine disruption. Front Biosci. 2003;8:S110–S8.
  • Maggiolini M, Vivacqua A, Fasanella G, et al. The G protein-coupled receptor GPR30 mediates c-fos up-regulation by 17β-estradiol and phytoestrogens in breast cancer cells. J Biol Chem. 2004;279(26):27008–27016.
  • Kajta M, Rzemieniec J, Litwa E, et al. The key involvement of estrogen receptor β and G-protein-coupled receptor 30 in the neuroprotective action of daidzein. Neuroscience 2013;238:345–360.
  • Wong RL, Walker CL. Molecular pathways: environmental estrogens activate nongenomic signaling to developmentally reprogram the epigenome. Clin Cancer Res. 2013;19(14):3732–3737.
  • Bologa CG, Revankar CM, Young SM, et al. Virtual and biomolecular screening converge on a selective agonist for GPR30. Nat Chem Biol. 2006;2(4):207–212.
  • Dennis MK, Burai R, Ramesh C, et al. In vivo effects of a GPR30 antagonist. Nat Chem Biol. 2009;5(6):421–427.
  • Dennis MK, Field AS, Burai R, et al. Identification of a GPER/GPR30 antagonist with improved estrogen receptor counterselectivity. J Steroid Biochem Mol Biol. 2011;127(3-5):358–366.
  • Ge X, Guo R, Qiao Y, et al. The G protein-coupled receptor GPR30 mediates the nontranscriptional effect of estrogen on the activation of PI3K/akt pathway in endometrial cancer cells. Int J Gynecol Cancer. 2013;23(1):52–59.
  • Elit L, Hirte H. Novel strategies for systemic treatment of endometrial cancer. Expert Opin Investig Drugs. 2000;9(12):2831–2853.
  • Dong P, Kaneuchi M, Konno Y, et al. Emerging therapeutic biomarkers in endometrial cancer. Biomed Res Int. 2013;2013:1–11.
  • Gong B, Yue Y, Wang R, et al. Overexpression of microRNA-194 suppresses the epithelial–mesenchymal transition in targeting stem cell transcription factor Sox3 in endometrial carcinoma stem cells. Tumour Biol. 2017;39(6):1010428317706217.
  • Huszar M, Pfeifer M, Schirmer U, et al. Up‐regulation of L1CAM is linked to loss of hormone receptors and E‐cadherin in aggressive subtypes of endometrial carcinomas. J Pathol. 2010;220(5):551–561.
  • Kent CN, Guttilla Reed IK. Regulation of epithelial–mesenchymal transition in endometrial cancer: connecting PI3K, estrogen signaling, and microRNAs. Clin Transl Oncol. 2016;18(11):1056–1061.
  • Zhang H, Wang X, Chen Z, et al. MicroRNA-424 suppresses estradiol-induced cell proliferation via targeting GPER in endometrial cancer cells. Cell Mol Biol. 2015;61(7):96–101.
  • Gaeo M, Cao YK, Xue XO. Effect of daidzein on proliferation of endometrial carcinoma. J Beijing Univ Traditional Chinese Med. 2010;33:162–165.
  • Jacob V, Hagai T, Soliman K. Structure-activity relationships of flavonoids. COC. 2011;15(15):2641–2657.
  • Crozier A, Del Rio D, Clifford MN. Bioavailability of dietary flavonoids and phenolic compounds. Mol Aspects Med. 2010;31(6):446–467.
  • Malloy KM, Wang J, Clark LH, et al. Novasoy and genistein inhibit endometrial cancer cell proliferation through disruption of the AKT/mTOR and MAPK signaling pathways. Am J Transl Res. 2018;10(3):784.
  • Gaete L, Tchernitchin AN, Bustamante R, et al. Genistein selectively inhibits estrogen-induced cell proliferation and other responses to hormone stimulation in the prepubertal rat uterus. J Med Food. 2011;14(12):1597–1603.
  • Sha GH, Lin SQ. Genistein inhibits proliferation of human endometrial endothelial cell in vitro. Chin Med Jl. 2008;23(1):49–53.
  • Tuli HS, Tuorkey MJ, Thakral F, et al. Molecular mechanisms of action of genistein in cancer: recent advances. Front Pharmacol. 2019;10:1336.
  • Shay JW. Role of telomeres and telomerase in aging and cancer. Cancer Discov. 2016;6(6):584–593.
  • Roy Choudhury S, Karmakar S, Banik NL, et al. Synergistic efficacy of sorafenib and genistein in growth inhibition by down regulating angiogenic and survival factors and increasing apoptosis through upregulation of p53 and p21 in malignant neuroblastoma cells having N-Myc amplification or non-amplification. Invest New Drugs. 2010;28(6):812–824.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.