75
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Quantitative structure activity relationship (QSAR) modeling study of some novel thiazolidine 4-one derivatives as potent anti-tubercular agents

&
Pages 83-92 | Received 15 May 2023, Accepted 03 Sep 2023, Published online: 22 Nov 2023

References

  • Badar AD, Sulakhe SM, Muluk MB, et al. Synthesis of isoniazid‐1, 2, 3‐triazole conjugates: antitubercular, antimicrobial evaluation and molecular docking study. J Heterocycl Chem. 2020;57(10):3544–3557. doi: 10.1002/jhet.4072.
  • Bagcchi S. WHO's global tuberculosis report 2022. The Lancet Microbe. 2023;4(1):e20. doi: 10.1016/S2666-5247(22)00359-7.
  • Bahuguna A, Rawat DS. An overview of new antitubercular drugs, drug candidates, and their targets. Med Res Rev. 2020;40(1):263–292. doi: 10.1002/med.21602.
  • Konduri S, Pogaku V, Prashanth J, et al. Sacubitril‐based urea and thiourea derivatives as novel inhibitors for anti‐tubercular against dormant tuberculosis. ChemistrySelect. 2021;6(16):3869–3874. doi: 10.1002/slct.202004724.
  • Sharma K, Tanwar O, Deora GS, et al. Expansion of a novel lead targeting M. tuberculosis DHFR as antitubercular agents. Bioorg Med Chem. 2019;27(7):1421–1429. doi: 10.1016/j.bmc.2019.02.053.
  • Dogamanti A, Chiranjeevi P, Aamate VK, et al. Indole-fused spirochromenes as potential anti-tubercular agents: design, synthesis and in vitro evaluation. Mol Divers. 2021;25(4):2137–2148. doi: 10.1007/s11030-020-10108-z.
  • Macalino SJY, Billones JB, Organo VG, et al. In silico strategies in tuberculosis drug discovery. Molecules. 2020;25(3):665. doi: 10.3390/molecules25030665.
  • Gramatica P, Sangion A. A historical excursus on the statistical validation parameters for QSAR models: a clarification concerning metrics and terminology. J Chem Inf Model. 2016;56(6):1127–1131. doi: 10.1021/acs.jcim.6b00088.
  • Roy K, Narayan Das R. A review on principles, theory and practices of 2D-QSAR. Curr Drug Metab. 2014;15(4):346–379. doi: 10.2174/1389200215666140908102230.
  • Bahare RS, Ganguly S, Choowongkomon K, et al. Synthesis, HIV-1 RT inhibitory, antibacterial, antifungal and binding mode studies of some novel N-substituted 5-benzylidine-2, 4-thiazolidinediones. Daru. 2015;23(1):6. doi: 10.1186/s40199-014-0086-1.
  • Abdellatif KR, Abdelgawad MA, Elshemy HA, et al. Design, synthesis and biological screening of new 4-thiazolidinone derivatives with promising COX-2 selectivity, anti-inflammatory activity and gastric safety profile. Bioorg Chem. 2016;64:1–12. doi: 10.1016/j.bioorg.2015.11.001.
  • Subhedar DD, Shaikh MH, Arkile MA, et al. Facile synthesis of 1, 3-thiazolidin-4-ones as antitubercular agents. Bioorg Med Chem Lett. 2016;26(7):1704–1708. doi: 10.1016/j.bmcl.2016.02.056.
  • Tratrat C, Petrou A, Geronikaki A, et al. Thiazolidin-4-ones as potential antimicrobial agents: experimental and in silico evaluation. Molecules. 2022;27(6):1930. doi: 10.3390/molecules27061930.
  • Kittakoop P, Mahidol C, Ruchirawat S. Alkaloids as important scaffolds in therapeutic drugs for the treatments of cancer, tuberculosis, and smoking cessation. Curr Top Med Chem. 2014;14(2):239–252. doi: 10.2174/1568026613666131216105049.
  • Samadhiya P, Sharma R, Srivastav SK, et al. Synthesis of 4-thiazolidine derivatives of 6-nitroindazole: pharmaceutical importance. J Chil Chem Soc. 2012;57(1):1036–1043. doi: 10.4067/S0717-97072012000100018.
  • Samadhiya P, Sharma R, Srivastava SK. Synthesis and antitubercular activity of 4-oxo-thiazolidine derivatives of 2-amino-5-nitrothiazole. Bull Chem Soc Eth. 2013;27(2):249–263. doi: 10.4314/bcse.v27i2.10.
  • Ekinci AS, Moncol J, Krishna VS, et al. 5-methyl-4-thiazolidinones: synthesis and evaluation as antitubercular agents. JRP. 2020;24(1):1–8. doi: 10.35333/jrp.2020.110.
  • Jaju S, Palkar M, Maddi V, et al. Synthesis and antimycobacterial activity of a novel series of isonicotinylhydrazide derivatives. Arch Pharm. 2009;342(12):723–731. doi: 10.1002/ardp.200900001.
  • Subhedar DD, Shaikh MH, Shingate BB, et al. Novel tetrazoloquinoline–thiazolidinone conjugates as possible antitubercular agents: synthesis and molecular docking. Med Chem Commun. 2016;7(9):1832–1848. doi: 10.1039/D3MD00139C.
  • Malipeddi H, Karigar AA, Malipeddi VR, et al. Synthesis and antitubercular activity of some novel thiazolidinone derivatives. Trop J Pharm Res. 2012;11(4):611–620. doi: 10.4314/tjpr.v11i4.12.
  • Hajalsiddig TTH, Osman ABM, Saeed AEM. 2D-QSAR modeling and molecular docking studies on 1HPyrazole-1-carbothioamide derivatives as EGFR kinase inhibitors. ACS Omega. 2020;5(30):18662–18674. doi: 10.1021/acsomega.0c01323.
  • Er-Rajy M, El Fadili M, Hadni H, et al. 2D-QSAR modeling, druglikeness studies, ADMET prediction, and molecular docking for anti-lung cancer activity of 3-substituted5-(phenylamino) indolone derivatives. Struct Chem. 2022;33(3):973–986. doi: 10.1007/s11224-022-01913-3.
  • Ravichandran V, Shalini S, Sokkalingam AD, et al. QSAR study of 7-Chloroquinoline derivatives as antitubercular agents. World J Pharm Pharmaceut Sci. 2014;3:1072–1082.
  • Mulatsari E, Mumpuni E, Nurhidayati L, et al. Chemical molecular visualization training with chemsketch software for senior high school students. JMS. 2021;2(1):102–112. doi: 10.24246/jms.v2i12021p102-112.
  • Hassan EM, Mustafa YF, Merkhan MM. Computation in chemistry: representative software and resources. IJABAS. 2022;6(4):1–22. https://bharatpublication.com/admin/upload_ijabas/01%20Eman%20M%20Hassan%2001255.pdf
  • Sathishkumar GK, Ibrahim M, Mohamed Akheel M, et al. Synthesis and mechanical properties of natural fiber reinforced epoxy/polyester/polypropylene composites: a review. J Nat Fibers. 2022;19(10):3718–3741. doi: 10.1080/15440478.2020.1848723.
  • Zhao M, Wang L, Zheng L, et al. 2D-QSAR and 3D-QSAR analyses for EGFR inhibitors. Biomed Res Int. 2017;2017:4649191. doi: 10.1155/2017/4649191.
  • Kasmi R, Hadaji E, Chedadi O, et al. 2D-QSAR and docking study of a series of coumarin derivatives as inhibitors of CDK (anticancer activity) with an application of the molecular docking method. Heliyon. 2020;6(8):e04514. doi: 10.1016/j.heliyon.2020.e04514.
  • Yu X. Prediction of inhibitory constants of compounds against SARS-CoV 3CLpro enzyme with 2D-QSAR model. J Saudi Chem Soc. 2021;25(7):101262. doi: 10.1016/j.jscs.2021.101262.
  • Gramatica P. Principles of QSAR modeling: comments and suggestions from personal experience. Int J Quant Struct Prop Relationship. 2020;5(3):61–97. doi: 10.4018/IJQSPR.20200701.oa1.
  • R S, Mk K. Lead optimization of 4-(thio)-chromenone 6-O-sulfamate analogs using QSAR, molecular docking and DFT - a combined approach as steroidal sulfatase inhibitors. J Recept Signal Transduct Res. 2021;41(2):123–137. doi: 10.1080/10799893.2020.1794004.
  • Hassan GS, Georgey HH, Mohammed EZ, et al. Mechanistic selectivity investigation and 2D-QSAR study of some new antiproliferative pyrazoles and pyrazolopyridines as potential CDK2 inhibitors. Eur J Med Chem. 2021;218:113389. doi: 10.1016/j.ejmech.2021.113389.
  • Trotsko N. Antitubercular properties of thiazolidin-4-ones–a review. Eur J Med Chem. 2021;215:113266. doi: 10.1016/j.ejmech.2021.113266.
  • Gramatica P, Chirico N, Papa E, et al. QSARINS: a new software for the development, analysis, and validation of QSAR MLR models. J Comput Chem. 2013;34(24):2121–2132. doi: 10.1002/jcc.23361.
  • Nour H, Abchir O, Belaidi S, et al. 2D-QSAR and molecular docking studies of carbamate derivatives to discover novel potent anti-butyrylcholinesterase agents for Alzheimer’s disease treatment. Bullet Korean Chem Soc. 2022;43(2):277–292. doi: 10.1002/bkcs.12449.
  • Chatterjee M, Roy K. Application of cross-validation strategies to avoid overestimation of performance of 2D-QSAR models for the prediction of aquatic toxicity of chemical mixtures. SAR QSAR Environ Res. 2022;33(6):463–484. doi: 10.1080/1062936X.2022.2081255.
  • Mukherjee RK, Kumar V, Roy K. Chemometric modeling of plant protection products (PPPs) for the prediction of acute contact toxicity against honey bees (A. mellifera): a 2D-QSAR approach. J Hazard Mater. 2022;423(Pt B):127230. doi: 10.1016/j.jhazmat.2021.127230.
  • Du M, Zhang D, Hou Y, et al. Combined 2D-QSAR, principal component analysis and sensitivity analysis studies on fluoroquinolones’ genotoxicity. Int J Environ Res Public Health. 2019;16(21):4156. doi: 10.3390/ijerph16214156.
  • Younis MH, Mohammed ER, Mohamed AR, et al. Synthesis and anti-Mycobacterium tuberculosis evaluation of new thiazolidin-4-one and thiazolo[3,2-a][1,3,5]triazine derivatives. Bioorg Chem. 2022;124:105807. doi: 10.1016/j.bioorg.2022.105807.
  • Aziz MA, Shehab WS, Al-Karmalawy AA, et al. Design, synthesis, biological evaluation, 2D-QSAR modeling, and molecular docking studies of novel 1H-3-indolyl derivatives as significant antioxidants. Int J Mol Sci. 2021;22(19):10396. doi: 10.3390/ijms221910396.
  • Kumar V, Ojha PK, Saha A, et al. Exploring 2D-QSAR for prediction of beta-secretase 1 (BACE1) inhibitory activity against Alzheimer’s disease. SAR QSAR Environ Res. 2020;31(2):87–133. doi: 10.1080/1062936X.2019.1695226.
  • Rajasekhar S, Das S, Karuppasamy R, et al. Identification of novel inhibitors for prp protein of Mycobacterium tuberculosis by structure based drug design, and molecular dynamics simulations. J Comput Chem. 2022;43(9):619–630. doi: 10.1002/jcc.26823.
  • B S, M K K. Insights into structures of imidazo oxazines as potent polyketide synthase XIII inhibitors using molecular modeling techniques. J Recept Signal Transduct Res. 2020;40:313–323. doi: 10.1080/10799893.2020.1742740.
  • Singh RP, Aziz MN, Gout D, et al. Novel thiazolidines: synthesis, antiproliferative properties and 2D-QSAR studies. Bioorg Med Chem. 2019;27(20):115047. doi: 10.1016/j.bmc.2019.115047.
  • Chauhan D, Kumar S, Hashim S, et al. Pharmacophore generation, quantitative Structure-Activity relationship (QSAR), and molecular dynamic simulation of newly substituted N-(6- Chloro-3-cyano4-phenyl-4H-chromen-2-yl)-2-(4-chloro-phenoxy)-acetamide for anticancer activity. Curr Comput Aided Drug Des. 2021;17(4):504–510. doi: 10.2174/1573409916666200525150410.]
  • Mali SN, Pandey A, Thorat BR, et al. Multiple 3D- and 2D-quantitative structure–activity relationship models (QSAR), theoretical study and molecular modeling to identify structural requirements of imidazopyridine analogues as anti-infective agents against tuberculosis. Struct Chem. 2022;33(3):679–694. doi: 10.1007/s11224-022-01879-2.
  • Geethaavacini G, Poh GP, Yan LY, et al. QSAR and pharmacophore mapping studies on benzothiazinimines to relate their structural features with anti-HIV activity. Med Chem. 2018;14(7):733–740. doi: 10.2174/1573406414666180529091618.
  • Banerjee A, De P, Kumar V, et al. Quick and efficient quantitative predictions of androgen receptor binding affinity for screening endocrine disruptor chemicals using 2D-QSAR and chemical ReadAcross. Chemosphere. 2022;309(Pt 1):136579. doi: 10.1016/j.chemosphere.2022.136579.
  • Edache EI, Uzairu A, Mamza PA, et al. Structure-based simulated scanning of rheumatoid arthritis inhibitors: 2D-QSAR, 3D-QSAR, docking, molecular dynamics simulation, and lipophilicity indices calculation. Sci Afr. 2022;15:e01088. doi: 10.1016/j.sciaf.2021.e01088.
  • Ravichandran V, Shalini S, Kumar KV, et al. QSAR study on arylthioquinoline derivatives as anti-tubercular agents. PTB Reports. 2015;1(2):81–86. doi: 10.1016/j.ejmech.2010.02.062.
  • Veerasamy R, Sivadasan S, Krishnamoorthi V, et al. QSAR study on quinolinecarbaldehyde derivatives as potential anti-tubercular agents. Thai J Pharmaceut Sci. 2016;40(2):72–81. https://digital.car.chula.ac.th/cgi/viewcontent.cgi?article=1926&context=tjps
  • Ertan T, Yildiz I, Tekiner-Gulbas B, et al. Synthesis, biological evaluation and 2D-QSAR analysis of benzoxazoles as antimicrobial agents. Eur J Med Chem. 2009;44(2):501–510. doi: 10.1016/j.ejmech.2008.04.001.
  • Panda SS, Girgis AS, Thomas SJ, et al. Synthesis, pharmacological profile and 2D-QSAR studies of curcumin-amino acid conjugates as potential drug candidates. Eur J Med Chem. 2020;196:112293. doi: 10.1016/j.ejmech.2020.112293.
  • Mathew B, Ravichandran V, Raghuraman S, et al. Two dimensional-QSAR and molecular dynamics studies of a selected class of aldoxime- and hydroxyl functionalized chalcones as monoamine oxidase-B inhibitors. J Biomol Struct Dyn. 2023;41(19):9256–9266. doi: 10.1080/07391102.2022.2146198.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.