1,124
Views
9
CrossRef citations to date
0
Altmetric
Articles

Difficulties in applying numerical simulations to an evaluation of occupational hazards caused by electromagnetic fields

References

  • Hansson Mild K, Alanko T, Gryz K, Hietanen M, Karpowicz J, Decat G, Falsaperla R, Rossi P, Sandström M. Exposure of workers to electromagnetic fields. A review of open questions on exposure assessment techniques. Int J Occup Saf Ergon. 2009;15(1):3–33. DOI:10.1080/10803548.2009.11076785
  • Koradecka D, Pośniak M, Jankowka E, Skowroń J, Karpowicz J. Chemical, dust, biological, and electromagnetic radiation hazards. In: Salvendy G, editor. Handbook of human factors and ergonomics. 3rd ed. New York (NY): Wiley; 2006. p. 945–964.
  • Reilly PJ. Applied bioelectricity. from electrical stimulation to electropathology. New York (NY): Springer-Verlag; 1998.
  • Durney CH. Electromagnetic dosimetry for models of humans and animals: a review of theoretical and numerical techniques. Proc IEEE. 1980;68(1):33–40. doi: 10.1109/PROC.1980.11578
  • International Commission on Non-Ionizing Radiation Protection (ICNIRP). Guidelines for limiting exposure to time-varying electric, magnetic, and electromagnetic fields (up to 300 GHz). Health Phys. 1998;74(4):494–522.
  • International Commission on Non-Ionizing Radiation Protection (ICNIRP). Guidelines for limiting exposure to time-varying electric and magnetic fields (1 Hz–100 kHz). Health Phys. 2010;99(6):818–836.
  • Institute of Electrical and Electronics Engineers (IEEE). Recommended practice for measurements and computations of radio frequency electromagnetic fields with respect to human exposure to such fields, 100 kHz–300 GHz (Standard No. C95.3-2002). New York (NY): IEEE; 2002.
  • Institute of Electrical and Electronics Engineers (IEEE). Standard for safety levels with respect to human exposure to radio frequency electromagnetic fields, 3 kHz to 300 GHz (Standard No. C95.1:2005). New York (NY): IEEE; 2006.
  • Directive 2013/35/EU of the European Parliament and of the Council of 26 June 2013 on the minimum health and safety requirements regarding the exposure of workers to the risks arising from physical agents (electromagnetic fields) (20th individual Directive within the meaning of Article 16(1) of Directive 89/391/EEC), O.J. nr L-179 of 29 June 2013, Brussels, Belgium
  • McIntosh RL, Anderson V. SAR versus VAR, and the size and shape that provide the most appropriate RF exposure metric in the range of 0.5–6 GHz. Bioelectromagnetics. 2011;32(4):312–321. doi: 10.1002/bem.20642
  • European Committee for Electrotechnical Standardization (CENELEC). Basic standard on measurement and calculation procedures for human exposure to electric, magnetic and electromagnetic fields (0 Hz–300 GHz). (Standard No. EN 50413:2009). Brussels: CENELEC; 2009.
  • Chari MVK, Salon SJ. Numerical methods in electromagnetism. San Diego (CA): Academic Press; 2000.
  • Bossavit A. Computational electromagnetism. San Diego (CA): Academic Press; 1998.
  • Yee KS. Numerical solution of initial boundary value problem involving Maxwell's equations in isotropic media. IEEE Trans. Antennas Propag. 1966;AP-14(3):302–307.
  • Weiland T. A discretization method for the solution of Maxwell's equations for six-component fields. AEU. 1977;31(3):116–120.
  • Harrington RF. Field computation by moment methods. New York (NY): MacMillan; 1968.
  • Dawson TW, Stuchly MA. High-resolution organ dosimetry for human exposure to low-frequency magnetic fields. IEEE Trans Magn. 1998;34(3):708–718. doi: 10.1109/20.668071
  • Orcutt N, Gandhi OP. A 3-D impedance method to calculate power deposition in biological bodies subjected to time-varying magnetic fields. IEEE Trans. Biomed. Eng. 1988;35:577–583. doi: 10.1109/10.4590
  • Institute of Electrical and Electronics Engineers (IEEE). Recommended practice for determining the peak spatial average specific absorption rate (SAR) in the human body from wireless communications devices, 30 MHz–6 GHz: general requirements for using the finite difference time domain (FDTD) method for SAR calculations (Standard No. P 62704-1). New York (NY): IEEE; draft.
  • Zradziński P. The properties of human body phantoms used in calculations of electromagnetic fields exposure by wireless communication handsets or hand-operated industrial devices. Electromagn Biol Med. 2013;32(2):226–235. doi: 10.3109/15368378.2013.776434
  • Tarao H, Korpinen L, Kuisti H, Hayashi N, Elovaara J, Isaka K. Numerical evaluation of currents induced in a worker by ELF non-uniform electric fields in high voltage substations and comparison with experimental results. Bioelectromagnetics. 2012;34(1):61–73. doi: 10.1002/bem.21738
  • Dimbylow PJ. Development of the female voxel phantom, NAOMI, and its application to calculations of induced current densities and electric fields from applied low frequency magnetic and electric fields. Phys Med Biol. 2005;50(6):1047–1070. doi: 10.1088/0031-9155/50/6/002
  • Gandhi OP, Lazzi G, Furse CM. Electromagnetic absorption in the human head and neck for mobile telephones at 835 and 1900MHz. IEEE Trans. Microw Theory Tech. 1996;44:1884–1897. doi: 10.1109/22.539947
  • Dimbylow P, Bolch W, Lee C. SAR calculations from 20 MHz to 6 GHz in the University of Florida newborn voxel phantom and their implications for dosimetry. Phys Med Biol. 2010;55(5):1519–1530. doi: 10.1088/0031-9155/55/5/017
  • Gosselin MC, Christ A, Kühn S, Kuster N. Dependence of the occupational exposure to mobile phone base stations on the properties of the antenna and the human body. IEEE Trans Electromagn Compat. 2009;51(2):227–235. doi: 10.1109/TEMC.2009.2013717
  • Karpowicz J, Gryz K. Practical aspects of occupational EMF exposure assessment. Environmentalist. 2007;27:525–531. doi: 10.1007/s10669-007-9067-y
  • Ackerman MJ. The Visible Human Project. Proc IEEE. 1998 Mar;86(3):504–11. doi: 10.1109/5.662875
  • European Committee for Electrotechnical Standardization (CENELEC). Basic standard for the evaluation of human exposure to electromagnetic fields from equipment for resistance welding and allied processes (standard No. EN 50505:2008). Brussels: CENELEC; 2008.
  • Zradziński P, Leszko W, Karpowicz J, Gryz K. Ocena narażenia na pola elektromagnetyczne użytkowników przenośnych radiotelefonów, z wykorzystaniem symulacji numerycznych i wymagań dyrektywy 2013/35/UE. [Assessment of the portable radiophone user's exposure to electromagnetic fields, with use of numerical simulations and directive 2013/35/UE requirements]. Med Pr. 2013;65(6):817–827.
  • Gryz K, Zradziński P, Karpowicz J, Leszko W. Pomiary i ocena pola elektromagnetycznego przy radiotelefonach przenośnych – w kontekście wymagań dyrektywy europejskiej 2013/35/UE i polskiego prawa pracy. [Measurement and assessment of electromagnetic fields near radiophones in line with provisions for European directive 2013/35/UE and Polish labour law]. Med Pr. 2013;64(5):671–680.
  • Gryz K, Karpowicz J, Molenda M, Zradziński P, Więckowski A, Mielniczek E. Analysis of EMF hazards in the vicinity of dielectric heaters – results of measurements and numerical simulations by various methods. Proceedings of the International Workshop on Electromagnetic Fields in the Workplace; 2005 Sept 5–7; Warszawa, Poland: Central Institute for Labour Protection – National Research Institute (CIOP-PIB).
  • Gabriel C. Compilation of the dielectric properties of body tissues at RF and microwave frequencies. Brooks Air Force Technical Report AL/OE-TR-1996-0037. Available from: http://niremf.ifac.cnr.it/docs/DIELECTRIC/Report.html
  • Zradziński P. The modeling and evaluation of the exposure of the workers operating suspended resistance welders to the simultaneous electromagnetic and biomechanical factors. Acta Bio-Opt Inform Med Inżynieria Biomed [Acta Bio-Opt Inform Med Biomed Eng]. 2012;18(1):50–54 [in Polish].
  • Hirata A, Takano Y, Fujiwara O, Dovan T, Kavet R. An electric field induced in retina and brain at treshold magnetic flux density causing magnetophosphenes. Phys Med Biol. 2011;56:4091–4101. doi: 10.1088/0031-9155/56/13/022