340
Views
14
CrossRef citations to date
0
Altmetric
Articles

The effect of moisture content within multilayer protective clothing on protection from radiation and steam

, &

References

  • Song G. Modeling thermal protection outfits for fire exposures [dissertation]. Raleigh (NC): North Carolina State University; 2002.
  • Young Moo L, Barker RL. Thermal protective performance of heat-resistant fabrics in various high intensity heat exposures. Text Res J. 1987;57(3):123–132. doi:doi: 10.1177/004051758705700301
  • Hummel A, Barker R, Lyons K, et al. Development of instrumented manikin hands for characterizing the thermal protective performance of gloves in flash fire exposures. Fire Technol. 2011;47(3):615–629. doi:doi: 10.1007/s10694-010-0190-9
  • Song G. Clothing air gap layers and thermal protective performance in single layer garment. J Ind Text. 2007;36(3):193–205. doi:doi: 10.1177/1528083707069506
  • Song G, Chitrphiromsri P, Ding D. Numerical simulations of heat and moisture transport in thermal protective clothing under flash fire conditions. Int J Occup Saf Ergon. 2008;14(1):89–106. doi:doi: 10.1080/10803548.2008.11076752
  • Torvi DA, Hadjisophocleous GV. Research in protective clothing for firefighters: state of the art and future directions. Fire Technol. 1999;35(2):111–130. doi: 10.1023/A:1015411804979
  • Crown EM, Ackerman MY, Dale JD, et al. Design and evaluation of thermal protective flightsuits. Part ii: instrumented mannequin evaluation. Cloth & Textiles Res J. 1998;16(1):79–87. doi:doi: 10.1177/0887302X9801600203
  • Lawson LK, Crown EM, Ackerman MY, et al. Moisture effects in heat transfer through clothing systems for wildland firefighters. Int J Occup Saf Ergon. 2004;10(3):227–238. doi:doi: 10.1080/10803548.2004.11076610
  • Rossi R, Indelicato E, Bolli W. Hot steam transfer through heat protective clothing layers. Int J Occup Saf Ergon. 2004;10(3):239–245. doi: 10.1080/10803548.2004.11076611
  • Prasad K, Twilley WH, Lawson JR. Thermal performance of fire fighters’ protective clothing: numerical study of transient heat and water vapor transfer. Gaithersburg (MD): US Department of Commerce, Technology Administration, National Institute of Standards and Technology (NIST); 2002. (NISTIR; 6881).
  • Mäkinen H, Smolander J, Vuorinen H. Simulation of the effect of moisture content in underwear and on the skin surface on steam burns of fire fighters. In: Mansdorf SZ, Sager R, Neilsen AP, editors. Performance of protective clothing, second symposium. Philadelphia (PA): American Society for Testing and Materials (ASTM); 1988. Standard No. ASTM STP 989. p. 415–421.
  • Keiser C, Wyss P, Rossi RM. Analysis of steam formation and migration in firefighters’ protective clothing using X-ray radiography. Int J Occup Saf Ergon. 2010;16(2):217–229. doi:doi: 10.1080/10803548.2010.11076839
  • Lawson JR. Fire fighters’ protective clothing and thermal environments of structural fire fighting. In: Stull J, Schwope A, editors. Performance of protective clothing: sixth Volume. West Conshohocken (PA): American Society for Testing and Materials (ASTM); 1997. Standard No. ASTM STP 19915S. p. 334–352.
  • Keiser C. Steam burns moisture management in firefighter protective clothing [dissertation]. Zurich: Eidgenössische Technische Hochschule; 2007.
  • Keiser C, Becker C, Rossi RM. Moisture transport and absorption in multilayer protective clothing fabrics. Text Res J. 2008;78(7):604–613. doi: 10.1177/0040517507081309
  • Barker R, Guerth C, Behnke W, et al. Measuring the thermal energy stored in firefighter protective clothing. In: Nelson C, Henry N, editors. Performance of protective clothing: sixth volume. West Conshohocken (PA): American Society for Testing and Materials (ASTM); 2000. Standard No. ASTM STP 14433S. p. 33–44.
  • Barker RL, Guerth-Schacher C, Grimes R, et al. Effects of moisture on the thermal protective performance of firefighter protective clothing in low-level radiant heat exposures. Text Res J. 2006;76(1):27–31. doi: 10.1177/0040517506053947
  • Young Moo Lee H, Barker RL. Effect of moisture on the thermal protective performance of heat-resistant fabrics. J Fire Sci. 1986;4(5):315–331. doi: 10.1177/073490418600400502
  • Fu M, Yuan MQ, Weng WG. Modeling of heat and moisture transfer within firefighter protective clothing with the moisture absorption of thermal radiation. Int J Therm Sci. 2015;96:201–210. doi:doi: 10.1016/j.ijthermalsci.2015.05.008
  • Nazaré S, Madrzykowski D. A review of test methods for determining protective capabilities of fire fighter protective clothing from steam. Gaithersburg (MD): US Department of Commerce, Technology Administration, National Institute of Standards and Technology (NIST); 2015. (NIST Technical Note; 1861).
  • Keiser C, Rossi RM. Temperature analysis for the prediction of steam formation and transfer in multilayer thermal protective clothing at low level thermal radiation. Text Res J. 2008;78(11):1025–1035. doi:doi: 10.1177/0040517508090484
  • American Society for Testing and Materials (ASTM). Standard test method for measuring the transmitted and stored energy of firefighter protective clothing systems. West Conshohocken (PA): ASTM International; 2011. Standard No. ASTM F2731:2011.
  • Kahn SA, Patel JH, Lentz CW, et al. Firefighter burn injuries: predictable patterns influenced by turnout gear. J Burn Care Res. 2012;33(1):152–156. doi: 10.1097/BCR.0b013e318234d8d9
  • Rossi RM, Zimmerli T. Influence of humidity on the radiant, convective and contact heat transmission through protective clothing materials. In: Johnson JS, Mansdorf SZ, editors. Performance of protective clothing. West Conshohocken (PA): American Society for Testing and Materials (ASTM); 1996. Standard No. ASTM STP 1237. p. 269–80.
  • Stull JO. The effect of moisture on firefighter protective clothing thermal insulation: a review of industry research. In: Nelson CN, Henry NW, editors. Performance of protective clothing, issues and priorities for the 21st century: seventh volume. West Conshohocken (PA): American Society for Testing and Materials (ASTM); 2000. p. 557–576.
  • American Society for Testing and Materials (ASTM). Standard test method for thickness of textile materials. West Conshohocken (PA): ASTM International; 1996. Standard No. ASTM D1777:1996.
  • International Organization for Standardization (ISO). Textiles – determination of the permeability of fabrics to air. Geneva: ISO; 1995. Standard No. ISO 9237:1995.
  • Su Y, Li J. Development of a test device to characterize thermal protective performance of fabrics against hot steam and thermal radiation. Meas Sci Technol. 2016;27:1–9. doi: 10.1088/0957-0233/27/12/125904
  • Pennes HH. Analysis of tissue and arterial blood temperatures in the resting human forearm. J Appl Physiol. 1948;1(2):93–122.
  • Torvi DA. Heat transfer in thin fibrous materials under high heat flux conditions [dissertation]. Edmonton (AB): University of Alberta; 1997.
  • Lu Y, Li J, Li X, et al. The effect of air gaps in moist protective clothing on protection from heat and flame. J Fire Sci. 2013;31(2):99–111. doi:doi: 10.1177/0734904112457342
  • Kerber S, Walton WD. Effect of positive pressure ventilation on a room fire. Gaithersburg (MD): US Department of Commerce, Technology Administration, National Institute of Standards and Technology (NIST); 2005. (NISTIR; 7213).
  • Henriques FC, Jr. Studies of thermal injury; the predictability and the significance of thermally induced rate processes leading to irreversible epidermal injury. Arch Pathol. 1947;43(5):489–502.
  • Su Y, Li J. Analyzing steam transfer though various flame-retardant fabric assemblies in radiant heat exposure. J Ind Text. 2016:1528083716674907.
  • Mishakov VY, Malykhina NM, Rubtsov, VI, et al. Effect of the composition and moisture content of a nonwoven fabric on its air permeability [abstract]. 1991.
  • Su Y, He J, Li J. Modeling the transmitted and stored energy in multilayer protective clothing under low-level radiant exposure. Appl Therm Eng. 2016;93:1295–1303. doi:doi: 10.1016/j.applthermaleng.2015.10.089
  • Cengel YA, Ghajar AJ, Ma H. Heat and mass transfer: fundamentals & applications. 4th ed. New York (NY): McGraw-Hill; 2011.
  • He J, Li J. Analyzing the transmitted and stored energy through multilayer protective fabric systems with various heat exposure time. Text Res J. 2016;86:235–244. doi:doi: 10.1177/0040517515588272

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.