425
Views
3
CrossRef citations to date
0
Altmetric
Articles

Coefficient of friction, walking speed and cadence on slippery and dry surfaces: shoes with different groove depths

, , &

References

  • Fischer H, Kirchberg S, Moessner T. Biomechanical gait analysis for the extraction of slip resistance test parameters. Ind Health. 2009;47(6):617–625. doi: 10.2486/indhealth.47.617
  • Li KW, Wu HH, Lin Y-C. The effect of shoe sole tread groove depth on the friction coefficient with different tread groove widths, floors and contaminants. Appl Ergon. 2006;37(6):743–748. doi:doi: 10.1016/j.apergo.2005.11.007
  • Burnfield JM, Powers CM. Prediction of slips: an evaluation of utilized coefficient of friction and available slip resistance. Ergonomics. 2006;49(10):982–995. doi: 10.1080/00140130600665687
  • Tsai Y-J, Powers CM. The influence of footwear sole hardness on slip initiation in young adults. J Forensic Sci. 2008;53(4):884–888. doi: 10.1111/j.1556-4029.2008.00739.x
  • Courtney TK, Sorock GS, Manning DP, et al. Occupational slip, trip, and fall-related injuries – can the contribution of slipperiness be isolated? Ergonomics. 2001;44(13):1118–1137. doi:doi: 10.1080/00140130110085538
  • Kim I-J, Smith R, Nagata H. Microscopic observations of the progressive wear on shoe surfaces that affect the slip resistance characteristics. Int J Ind Ergon. 2001;28(1):17–29. doi:doi: 10.1016/S0169-8141(01)00010-5
  • Beschorner KE, Redfern MS, Porter WL, et al. Effects of slip testing parameters on measured coefficient of friction. Appl Ergon. 2007;38(6):773–780. doi: 10.1016/j.apergo.2006.10.005
  • Chang W-R, Grönqvist R, Leclercq S, et al. The role of friction in the measurement of slipperiness, Part 1: friction mechanisms and definition of test conditions. Ergonomics. 2001;44(13):1217–1232. doi: 10.1080/00140130110085574
  • Tsai Y-J, Powers CM. The influence of footwear sole hardness on slip characteristics and slip-induced falls in young adults. J Forensic Sci. 2013;58(1):46–50. doi: 10.1111/j.1556-4029.2012.02296.x
  • Redfern MS, Cham R, Gielo-Perczak K, et al. Biomechanics of slips. Ergonomics. 2001;44(13):1138–1166. doi: 10.1080/00140130110085547
  • Tsai Y-J, Powers CM. Increased shoe sole hardness results in compensatory changes in the utilized coefficient of friction during walking. Gait Posture. 2009;30(3):303–306. doi:doi: 10.1016/j.gaitpost.2009.05.019
  • Chang W-R, Matz S, Chang C-C. The available coefficient of friction associated with different slip probabilities for level straight walking. Saf Sci. 2013;58(Suppl C):49–52. doi:doi: 10.1016/j.ssci.2013.03.014
  • Burnfield JM, Powers CM, editors. Influence of age and gender on utilized coefficient of friction during walking at different speeds. West Conshohocken (PA): ASTM International; 2002.
  • Burnfield JM, Powers CM. The role of center of mass kinematics in predicting peak utilized coefficient of friction during walking. J Forensic Sci. 2007;52(6):1328–1333.
  • Buczek FL, Cavanagh PR, Kulakowski BT, et al. Slip resistance needs of the mobility disabled during level and grade walking. In: Everett Gray B, editor. Slips, stumbles, and falls: pedestrian footwear and surfaces. Philadelphia (PA): ASTM; 1990. p. 39–54.
  • Gronqvist R, Chang W-R, Courtney TK, et al. Measurement of slipperiness: fundamental concepts and definitions. Ergonomics. 2001;44(13):1102–1117. doi: 10.1080/00140130110085529
  • Bertram JEA. Constrained optimization in human walking: cost minimization and gait plasticity. J Exp Biol. 2005;208(Pt 6):979–991. doi:doi: 10.1242/jeb.01498
  • Powers CM, Burnfield JM, Lim P, et al. Utilized coefficient of friction during walking: static estimates exceed measured values. J Forensic Sci. 2002;47(6):1303–1308. doi:doi: 10.1520/JFS15565J
  • Moyer BE, Chambers AJ, Redfern MS, et al. Gait parameters as predictors of slip severity in younger and older adults. Ergonomics. 2006;49(4):329–343. doi: 10.1080/00140130500478553
  • Petrarca M, Di Rosa G, Cappa P, et al. Stepping over obstacles of different heights: kinematic and kinetic strategies of leading limb in hemiplegic children. Gait Posture. 2006;24(3):331–341. doi:doi: 10.1016/j.gaitpost.2005.10.010
  • Grieser BC, Rhoades TP, Shah RJ. Slip resistance. Prof Saf. 2002;47(6):43–48.
  • Chang W-R, Li KW, Huang Y-H, et al. Assessing floor slipperiness in fast-food restaurants in Taiwan using objective and subjective measures. Appl Ergon. 2004;35(4):401–408. doi:doi: 10.1016/j.apergo.2004.01.006
  • Li KW, Chang W-R, Leamon TB, et al. Floor slipperiness measurement: friction coefficient, roughness of floors, and subjective perception under spillage conditions. Saf Sci. 2004;42(6):547–565. doi:doi: 10.1016/j.ssci.2003.08.006
  • Menant JC, Steele JR, Menz HB, et al. Effects of walking surfaces and footwear on temporo-spatial gait parameters in young and older people. Gait Posture. 2009;29(3):392–397. doi:doi: 10.1016/j.gaitpost.2008.10.057
  • Kavanagh JJ, Barrett RS, Morrison S. Upper body accelerations during walking in healthy young and elderly men. Gait Posture. 2004;20(3):291–298. doi: 10.1016/j.gaitpost.2003.10.004
  • Ziaei M, Nabavi SH, Mokhtarinia HR, et al. The effect of shoe sole tread groove depth on the gait parameters during walking on dry and slippery surface. Int J Occup Environ Med. 2013;4(1):27–35.
  • Bentley TA, Haslam RA. Identification of risk factors and countermeasures for slip, trip and fall accidents during the delivery of mail. Appl Ergon. 2001;32(2):127–134. doi:doi: 10.1016/S0003-6870(00)00048-X
  • Li KW, Chen CJ. The effect of shoe soling tread groove width on the coefficient of friction with different sole materials, floors, and contaminants. Appl Ergon. 2004;35(6):499–507. doi:doi: 10.1016/j.apergo.2004.06.010
  • Tencer AF, Koepsell TD, Wolf ME, et al. Biomechanical properties of shoes and risk of falls in older adults. J Am Geriatr Soc. 2004;52(11):1840–1846. doi: 10.1111/j.1532-5415.2004.52507.x
  • Menz HB, Lord SR, Fitzpatrick RC. Acceleration patterns of the head and pelvis when walking on level and irregular surfaces. Gait Posture. 2003;18(1):35–46. doi: 10.1016/S0966-6362(02)00159-5
  • Sekiya N, Nagasaki H. Reproducibility of the walking patterns of normal young adults: test–retest reliability of the walk ratio(step-length/step-rate). Gait Posture. 1998;7(3):225–227. doi:doi: 10.1016/S0966-6362(98)00009-5
  • Cham R, Redfern MS. Changes in gait when anticipating slippery floors. Gait Posture. 2002;15(2):159–171. doi:doi: 10.1016/S0966-6362(01)00150-3
  • Lockhart TE, Spaulding JM, Park SH. Age-related slip avoidance strategy while walking over a known slippery floor surface. Gait Posture. 2007;26(1):142–149. doi:doi: 10.1016/j.gaitpost.2006.08.009
  • Cappellini G, Ivanenko YP, Dominici N, et al. Motor patterns during walking on a slippery walkway. J Neurophysiol. 2010;103(2):746–760. doi:doi: 10.1152/jn.00499.2009
  • Hanson JP, Redfern MS, Mazumdar M. Predicting slips and falls considering required and available friction. Ergonomics. 1999;42(12):1619–1633. doi: 10.1080/001401399184712
  • Golubitsky M, Stewart I, Buono P-L, et al. Symmetry in locomotor central pattern generators and animal gaits. Nature. 1999;401(6754):693–695. doi:doi: 10.1038/44416
  • Ivanenko YP, Cappellini G, Poppele RE, et al. Spatiotemporal organization of alpha-motoneuron activity in the human spinal cord during different gaits and gait transitions. Eur J Neurosci. 2008;27(12):3351–3368. doi: 10.1111/j.1460-9568.2008.06289.x

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.