923
Views
11
CrossRef citations to date
0
Altmetric
Articles

Performance shaping factors in the human error probability modification of human reliability analysis

& ORCID Icon

References

  • Meister D. A critical review of human performance reliability predictive methods. IEEE Trans Reliab. 1973;R-22:116–123. doi: 10.1109/TR.1973.5215925
  • Swain AD. Human reliability analysis: need, status, trends and limitations. Reliab Eng Syst Saf. 1990;29:301–313. doi: 10.1016/0951-8320(90)90013-D
  • Griffith CD, Mahadevan S. Inclusion of fatigue effects in human reliability analysis. Reliab Eng Syst Saf. 2011;96:1437–1447. doi: 10.1016/j.ress.2011.06.005
  • Hsueh K-S, Mosleh A. The development and application of the accident dynamic simulator for dynamic probabilistic risk assessment of nuclear power plants. Reliab Eng Syst Saf. 1996;52:297–314. doi: 10.1016/0951-8320(95)00140-9
  • Liao H, Chang J-L. Human performance in control rooms of nuclear power plants: a survey study. Hum Factors Ergon Manuf Serv Ind. 2011;21:412–428. doi: 10.1002/hfm.20260
  • Chandler T, Chang J, Mosleb A, et al. Human reliability analysis methods: selection guidance for NASA. Washington (DC): National Aeronautics and Space Administration; 2006. NASA/OSMA Technical Report.
  • Foyle DC, Hooey BL. Human performance modeling in aviation. Boca Raton (FL): CRC Press; 2008.
  • Liu D, Jaramillo M, Vincenzi D. The effects of system reliability and task uncertainty on autonomous unmanned aerial vehicle operator performance under high time pressure. Hum Factors Man. 2015;25:515–522. doi: 10.1002/hfm.20565
  • Health and Safety Executive (HSE). Review of human reliability assessment methods. Norwich: HSE Books; 2009. ( Research report; RR669).
  • Di Pasquale V, Iannone R, Miranda S, et al. An overview of human reliability analysis techniques in manufacturing operations. In: Schiraldi M, editor. Operations management. London: InTech-Open Access; 2013. p. 221–240.
  • Bubb H. Human reliability: a key to improved quality in manufacturing. Hum Factors Ergon Manuf Serv Ind. 2005;15:353–368. doi: 10.1002/hfm.20032
  • Hale AR, Stoop J, Hommels J. Human error models as predictors of accident scenarios for designers in road transport systems. Ergonomics. 1990;33:1377–1387. doi: 10.1080/00140139008925339
  • Fritzsche L. Ergonomics risk assessment with digital human models in car assembly: simulation versus real life. Hum Factors Ergon Manuf Serv Ind. 2010;20:287–299. doi: 10.1002/hfm.20221
  • Spurgin AJ. Human reliability assessment theory and practice. Boca Raton (FL): CRC Press; 2009.
  • Gertman DI. Representing cognitive activities and errors in HRA trees. Reliab Eng Syst Saf. 1993;39:25–34. doi: 10.1016/0951-8320(93)90145-O
  • Pan X, Lin Y, He C. A review of cognitive models in human reliability analysis. Qual Reliab Eng Int. 2017;33:1299–1316. doi: 10.1002/qre.2111
  • Mosleh A, Chang YH. Model-based human reliability analysis: prospects and requirements. Reliab Eng Syst Saf. 2004;83:241–253. doi: 10.1016/j.ress.2003.09.014
  • Coyne KA. A predictive model of nuclear power plant crew decision-making and performance in a dynamic simulation environment [dissertation]. College Park (MD): University of Maryland, College Park; 2009.
  • Hollnagel E. Human reliability analysis: context and control. Acad Press. 1993;53:99–101.
  • Lewin K. Defining the ‘field at a given time’. Psychol Rev. 1943;50:292–310. doi: 10.1037/h0062738
  • Swain A, Guttman H. Handbook of human reliability analysis with emphasis on nuclear power plant applications. Washington (DC): US Nuclear Regulatory Commission; 1983. (NUREG/CR-1278).
  • Chang YHJ, Mosleh A. Cognitive modeling and dynamic probabilistic simulation of operating crew response to complex system accidents: part 1: overview of the IDAC model. Reliab Eng Syst Saf. 2007;92:997–1013. doi: 10.1016/j.ress.2006.05.014
  • Hollnagel E. Cognitive reliability and error analysis method (CREAM). Oxford: Elsevier; 1998.
  • Williams JC. Heart – a proposed method for achieving high reliability in process operation by means of human factors engineering technology. Saf Reliab. 2015;35:5–25. doi: 10.1080/09617353.2015.11691046
  • Cooper SE, Ramey-Smith AM, Wreathall J, et al. A technique for human event analysis (ATHEANA) – technical basis and methodological description. Upton (NY): Brookhaven National Laboratory; 1996. (US Nuclear Regulatory Commission; report no. NUREG/CR-6350).
  • Bley DC, Cooper SE, Forester JA, et al. Discussion of comments from a peer review of a technique for human event analysis (ATHEANA). In: Proceedings of the 26th Water Reactor Safety Information Meeting, Vol. 2. 1998 Sep 26; Bethesda (MD). Washington (DC): US Nuclear Regulatory Commission; 1999. (NUREG/CP-0166). Available from: https://www.osti.gov/servlets/purl/3311
  • Embrey DE, Humphreys P, Rosa EA, et al. SLIM-MAUD: an approach to assessing human error probabilities using structured expert judgment. Volume I. Overview of SLIM-MAUD. Upton (NY): Brookhaven National Laboratory; 1984.
  • Embrey DE, Humphreys P, Rosa EA, et al. SLIM-MAUD: an approach to assessing human error probabilities using structured expert judgment. Volume II. Detailed analysis of the technical issues. Upton (NY): Brookhaven National Laboratory; 1984.
  • Gertman DI, Blackman HS, Marble JL, et al. The SPAR-H human reliability analysis method. Washington (DC): US Nuclear Regulatory Commission; 2005. (NUREG/CR-6883.)
  • Sun F, Zhong S, Zhi-Yu WU. A method and application study on holistic decision tree for human reliability analysis in nuclear power plant. Chin J Nucl Sci Eng. 2008; 28:0258–0918.
  • Woods DD, Pople HE, Roth EM. Cognitive environment simulation: a tool for modeling intention formation for human reliability analysis. Nucl Eng Design. 1992;134:371–380. doi: 10.1016/0029-5493(92)90153-M
  • Roth EM, Woods DD, Pople HE. Cognitive simulation as a tool for cognitive task analysis. Ergonomics. 1992;35:1163–1198. doi: 10.1080/00140139208967389
  • Woods DD, Roth EM, Pople H. Cognitive environment simulation: an artificial intelligence system for human performance assessment. Washington (DC): US Nuclear Regulatory Commission; 1987. (NUREG/CR4862).
  • Woods DD, Roth EM, Pople H Jr. Modeling human intention formation for human reliability assessment. Reliab Eng Syst Saf. 1988;22:169–200. doi: 10.1016/0951-8320(88)90073-7
  • Groth KM, Mosleh A. A data-informed PIF hierarchy for model-based human reliability analysis. Reliab Eng Syst Saf. 2012;108:154–174. doi: 10.1016/j.ress.2012.08.006
  • Tourki Y, Keisler J, Linkov I. Scenario analysis: a review of methods and applications for engineering and environmental systems. Environ Syst Decis. 2013;33:3–20. doi: 10.1007/s10669-013-9437-6
  • Lin YM, Pan X. Study on risk scenarios of project failure based on Monte-Carlo simulation. In: Proceedings of the 2011 IEEE 18th International Conference on Industrial Engineering and Engineering Management; 2011 Sep 3–5; Changchun, China. Piscataway (NJ): IEEE; 2011. p. 1291–1295.
  • Taylor-Adams S, Kirwan B. Human reliability data requirements. Int J Qual Reliab Manag. 1995;12:24–46. doi: 10.1108/02656719510076221
  • Kim JW, Jung W. A taxonomy of performance influencing factors for human reliability analysis of emergency tasks. J Loss Prev Process Ind. 2003;16:479–495. doi: 10.1016/S0950-4230(03)00075-5
  • Heinrich HW, Petersen D, Roos NR. Industrial accident prevention: a safety management approach. New York (NY): McGraw-Hill; 1980.
  • Wu S, Hrudey S, French S, et al. A role for human reliability analysis (HRA) in preventing drinking water incidents and securing safe drinking water. Water Res. 2009;43:3227–3238. doi: 10.1016/j.watres.2009.04.040
  • Le Bot PL. Human reliability data, human error and accident models – illustration through the Three Mile Island accident analysis. Reliab Eng Syst Saf. 2004;83:153–167. doi: 10.1016/j.ress.2003.09.007
  • Hollnagel E. Human reliability assessment in context. Nucl Eng Technol. 2005;37:707–712.
  • Kirwan B. The validation of three human reliability quantification techniques – THERP, HEART and JHEDI: part 1 – technique descriptions and validation issues. Appl Ergon. 1996;27:359–373. doi: 10.1016/S0003-6870(96)00044-0
  • Hannaman G, Spurgin A, Lukic Y. Human cognitive reliability model for PRA analysis. Palo Alto (CA): Electronic Power Research Institute; 1984.
  • Barnes MJ, Bley D, Cooper S. Technical basis and implementation guidelines for a technique for human event analysis (ATHEANA). Washington (DC): Nuclear Regulatory Commission, Office of Nuclear Regulatory Research, Division of Risk Analysis and Applications; 2000.
  • Jarvis M, Jain B. Principal component analysis of PSF variation in weak lensing surveys. Hydrol Processes. 2005;26:387–404.
  • Groth KM, Mosleh A. A data-informed model of performance shaping factors and their interdependencies for use in human reliability analysis. In: Bris R, Soares CG, Martorell S, editors. Proceedings of the European Society for Reliability Annual Meeting; 2009; Prague. London: Taylor & Francis; 2010. p. 231–238.
  • Rasmussen J. Skills, rules, and knowledge; signals, signs, and symbols, and other distinctions in human performance models. IEEE Trans Syst Man Cybern. 1983;SMC-13:257–266. doi: 10.1109/TSMC.1983.6313160
  • Rasmussen J. Outlines of a hybrid model of the process plant operator. In: Sheridan TB, Johannsen G, editors. Monitoring behavior and supervisory control. Boston (MA): Springer; 1976. p. 371–383.
  • Rasmussen J. Human errors. A taxonomy for describing human malfunction in industrial installations. J Occup Accid. 1982;4:311–333. doi: 10.1016/0376-6349(82)90041-4
  • Hannaman GW, Worledge DH. Some developments in human reliability analysis approaches and tools. Reliab Eng Syst Saf. 1988;22:235–256. doi: 10.1016/0951-8320(88)90076-2
  • Chien SH, Dykes AA, Stefkar JW, et al. Quantification of human error rates using a SLIM-based approach. In: Conference Record for 1988 IEEE Fourth Conference on Human Factors and Power Plants, 88CH2576-7; 1988 June 5–9; Newport (CA). Piscataway (NJ): IEEE. p. 297–302.
  • Keeney RL, Raiffa H. Decisions with multiple objectives. Cambridge (UK): Cambridge University Press; 1993.
  • Kirwan B, Kennedy R, Taylor-Adams S, et al. The validation of three human reliability quantification techniques – THERP, HEART and JHEDI: part II – results of validation exercise. Appl Ergon. 1997;28:17–25. doi: 10.1016/S0003-6870(96)00045-2
  • Forester J, Kolaczkowski A, Lois E, et al. Evaluation of human reliability analysis methods against good practices. Washington (DC): US Nuclear Regulatory Commission; 2006. (NUREG-1842).
  • He X, Wang Y, Shen Z, et al. A simplified CREAM prospective quantification process and its application. Reliab Eng Syst Saf. 2008;93:298–306. doi: 10.1016/j.ress.2006.10.026
  • Kim MC, Seong PH, Hollnagel E. A probabilistic approach for determining the control mode in CREAM. Reliab Eng Syst Saf. 2006;91:191–199. doi: 10.1016/j.ress.2004.12.003
  • Fujita Y, Hollnagel E. Failures without errors: quantification of context in HRA. Reliab Eng Syst Saf. 2004;83:145–151. doi: 10.1016/j.ress.2003.09.006
  • Sun Z, Li Z, Gong E, et al. Estimating human error probability using a modified CREAM. Reliab Eng Syst Saf. 2012;100:28–32. doi: 10.1016/j.ress.2011.12.017
  • Mu L, Xiao B, Yuan Z, et al. The research of CREAM prediction analysis method based on BP neural network under dynamic context. Paper presented at: First International Conference on Reliability Systems Engineering (ICRSE); 2015 Oct 21–23; Beijing. Piscataway (NJ): IEEE; 2016. p. 1–6.
  • Akyuz E, Celik M. Application of CREAM human reliability model to cargo loading process of LPG tankers. J Loss Prev Process Ind. 2015;34:39–48. doi: 10.1016/j.jlp.2015.01.019
  • Ashrafi M, Davoudpour H, Khodakarami V. A Bayesian network to ease knowledge acquisition of causal dependence in CREAM: application of recursive noisy-OR gates. Qual Reliab Eng Int. 2017;33:479–491. doi: 10.1002/qre.2021
  • Boring RL, Gertman DI. Atomistic and holistic approaches to human reliability analysis in the US nuclear power industry. Saf Reliab. 2005;25:21–37. doi: 10.1080/09617353.2005.11690802
  • Forester J, Bley D, Cooper S, et al. Expert elicitation approach for performing ATHEANA quantification. Reliab Eng Syst Saf. 2004;83:207–220. doi: 10.1016/j.ress.2003.09.011
  • Cacciabue PC, Hollnagel E. Simulation of cognition: applications. In: Hoc J-M, Cacciabue PC, Hollnagel E, editors. Expertise and technology: cognition & human–computer cooperation. Hillsdale (NJ): Erlbaum; 1995. p. 55–73.
  • Pople HE, Spangler WE, Pople MT. EAGOL: an artificial intelligence system for process monitoring, situation assessment, and response planning. In: Lopez R, De Mantaras, Poole D, editors. Proceedings of 10th IEEE Conference on Artificial Intelligence for Applications; 1994 Mar 1–4; San Antonio, TX. San Francisco (CA): Morgan Kaufmann; 1994. p. 298–304.
  • Chang YHJ, Mosleh A. Cognitive modeling and dynamic probabilistic simulation of operating crew response to complex system accidents. Part 2: IDAC performance influencing factors model. Reliab Eng Syst Saf. 2007;92:1014–1040. doi: 10.1016/j.ress.2006.05.010
  • Chang YHJ, Mosleh A. Cognitive modeling and dynamic probabilistic simulation of operating crew response to complex system accidents: part 3: IDAC operator response model. Reliab Eng Syst Saf. 2007;92:1041–1060. doi: 10.1016/j.ress.2006.05.013
  • Chang YHJ, Mosleh A. Cognitive modeling and dynamic probabilistic simulation of operating crew response to complex system accidents. Part 4: IDAC causal model of operator problem-solving response. Reliab Eng Syst Saf. 2007;92:1061–1075. doi: 10.1016/j.ress.2006.05.011
  • Chang YHJ, Mosleh A. Cognitive modeling and dynamic probabilistic simulation of operating crew response to complex system accidents: part 5: dynamic probabilistic simulation of the IDAC model. Reliab Eng Syst Saf. 2007;92:1076–1101. doi: 10.1016/j.ress.2006.05.012
  • Pavlov IP, Anrep GVe. Conditioned reflexes: an investigation of the physiological activity of the cerebral cortex. Ann Neurosci. 2010;8:136–141.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.