2,797
Views
4
CrossRef citations to date
0
Altmetric
Articles

The effect of two types of maximal voluntary contraction and two electrode positions in field recordings of forearm extensor muscle activity during hotel room cleaning

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon

References

  • Chen HC, Chang CM, Liu YP, et al. Ergonomic risk factors for the wrists of hairdressers. Appl Ergon. 2010;41(1):98–105. doi: 10.1016/j.apergo.2009.05.001
  • Hansson G-Å, Balogh I, Ohlsson K, et al. Physical workload in various types of work: part I. Wrist and forearm. Int J Ind Ergon. 2009;39(1):221–233. doi: 10.1016/j.ergon.2008.04.003
  • Barrero LH, Pulido JA, Berrio S, et al. Physical workloads of the upper-extremity among workers of the Colombian flower industry. Am J Ind Med. 2012;55(10):926–939. doi: 10.1002/ajim.22102
  • Roman-Liu D, Bartuzi P. The influence of wrist posture on the time and frequency EMG signal measures of forearm muscles. Gait Posture. 2013;37(3):340–344. doi: 10.1016/j.gaitpost.2012.07.027
  • David GC. Ergonomic methods for assessing exposure to risk factors for work-related musculoskeletal disorders. Occup Med (Lond). 2005;55(3):190–199. doi: 10.1093/occmed/kqi082
  • Nordander C, Balogh I, Mathiassen SE, et al. Precision of measurements of physical workload during standardised manual handling. Part I: surface electromyography of m. trapezius, m. infraspinatus and the forearm extensors. J Electromyogr Kinesiol. 2004;14(4):443–454. doi: 10.1016/j.jelekin.2003.12.003
  • Nordander C, Ohlsson K, Åkesson I, et al. Exposure–response relationships in work-related musculoskeletal disorders in elbows and hands – a synthesis of group-level data on exposure and response obtained using uniform methods of data collection. Appl Ergon. 2013;44(2):241–253. doi: 10.1016/j.apergo.2012.07.009
  • Nordander C, Willner J, Hansson GA, et al. Influence of the subcutaneous fat layer, as measured by ultrasound, skinfold calipers and BMI, on the EMG amplitude. Eur J Appl Physiol. 2003;89(6):514–519. doi: 10.1007/s00421-003-0819-1
  • Blangsted AK, Hansen K, Jensen C. Muscle activity during computer-based office work in relation to self-reported job demands and gender. Eur J Appl Physiol. 2003;89(3):352–358. doi: 10.1007/s00421-003-0805-7
  • Bao S, Silverstein B. Estimation of hand force in ergonomic job evaluations. Ergonomics. 2005;48(3):288–301. doi: 10.1080/0014013042000327724
  • Ngo BPT, Wells RP. Evaluating protocols for normalizing forearm electromyograms during power grip. J Electromyogr Kinesiol. 2016;26:66–72. doi: 10.1016/j.jelekin.2015.10.014
  • Dahlqvist C, Nordander C, Granqvist L, et al. Comparing two methods to record maximal voluntary contractions and different electrode positions in recordings of forearm extensor muscle activity: refining risk assessments for work-related wrist disorders. Work. 2018;59:231–242. doi: 10.3233/wor-172668
  • Burden A. How should we normalize electromyograms obtained from healthy participants? What we have learned from over 25 years of research. J Electromyogr Kinesiol. 2010;20(6):1023–1035. doi: 10.1016/j.jelekin.2010.07.004
  • Barr AE, Goldsheyder D, Ozkaya N, et al. Testing apparatus and experimental procedure for position specific normalization of electromyographic measurements of distal upper extremity musculature. Clin Biomech (Bristol, Avon). 2001;16(7):576–585. doi:S0268-0033(01)00046-8 doi: 10.1016/S0268-0033(01)00046-8
  • Hermens HJ, Freriks B, Merletti R, et al. European Recommendations for Surface ElectroMyoGraphy, results of the SENIAM project. Enschede: Roessingh Research and Development; 1999. p. 1–122.
  • Mesin L, Merletti R, Rainoldi A. Surface EMG: the issue of electrode location. J Electromyogr Kinesiol. 2009;19(5):719–726. doi: 10.1016/j.jelekin.2008.07.006
  • Takala EP, Toivonen R. Placement of forearm surface EMG electrodes in the assessment of hand loading in manual tasks. Ergonomics. 2013;56(7):1159–1166. doi: 10.1080/00140139.2013.799235
  • Ghapanchizadeh H, Ahmad SA, Ishak AJ, editors. Recommended surface EMG electrode position for wrist extension and flexion. In: Proceedings of 2015 IEEE Student Symposium in Biomedical Engineering & Sciences (ISSBES). Kuala Lumpur, Malaysia: IEEE; 2015. p. 108–112. doi: 10.1109/ISSBES.2015.7435877
  • Huebner A, Faenger B, Schenk P, et al. Alteration of surface EMG amplitude levels of five major trunk muscles by defined electrode location displacement. J Electromyogr Kinesiol. 2015;25(2):214–223. doi: 10.1016/j.jelekin.2014.11.008
  • Hansson G-Å, Asterland P, Skerfving S. Acquisition and analysis of whole-day electromygraphic field recordings. In: Hermens HJ, Hägg G, Freriks B, editors. Proceedings of the second general SENIAM (Surface EMG for non-invasive assessment of muscles) workshop. Stockholm: Roessingh Research and Development; 1997. p. 19–27.
  • Jensen C, Vasseljen Jr O, Westgaard RH. Estimating maximal EMG amplitude for the trapezius muscle: on the optimization of experimental procedure and electrode placement for improved reliability and increased signal amplitude. J Electromyogr Kinesiol. 1996;6(1):51–58. doi: 10.1016/1050-6411(94)00012-3
  • Mogk JPM, Keir PJ. Crosstalk in surface electromyography of the proximal forearm during gripping tasks. J Electromyogr Kinesiol. 2003;13(1):63–71. doi: 10.1016/S1050-6411(02)00071-8
  • Farina D, Cescon C, Merletti R. Influence of anatomical, physical, and detection-system parameters on surface EMG. Biol Cybern. 2002;86(6):445–456. doi: 10.1007/s00422-002-0309-2
  • Greig M, Wells R. A systematic exploration of distal arm muscle activity and perceived exertion while applying external forces and moments. Ergonomics. 2008;51(8):1238–1257. doi: 10.1080/00140130802037289