3,511
Views
6
CrossRef citations to date
0
Altmetric
Articles

Effects of full body harness design on fall arrest performance

ORCID Icon

References

  • Główny Urząd Statystyczny (GUS). Wypadki przy pracy w 2015 r [Occupational accidents in 2017]. Warszawa: GUS; 2018 [cited 2019 Oct 12]. Polish. Available from: http://stat.gov.pl/obszary-tematyczne/rynek-pracy/warunki-pracy-wypadki-przy-pracy/
  • European Committee for Standardization (CEN). Personal fall protection equipment – anchor devices. Brussels: CEN; 2012. Standard No. EN 795:2012.
  • European Committee for Standardization (CEN). Personal protective equipment against falls from a height: energy absorbers. Brussels: CEN; 2002. Standard No. EN 355:2002.
  • European Committee for Standardization (CEN). Personal protective equipment against falls from a height: retractable type fall arresters. Brussels: CEN; 2002. Standard No. EN 360:2002.
  • European Committee for Standardization (CEN). Personal protective equipment against falls from a height: guided type fall arresters including a flexible anchor line. Brussels: CEN; 2002. Standard No. EN 353-2:2002.
  • European Committee for Standardization (CEN). Personal fall protection equipment. Lanyards. Brussels: CEN; 2010. Standard No. EN 354:2010.
  • European Committee for Standardization (CEN). Personal fall protection equipment: guided type fall arresters including an anchor line: guided type fall arresters including a rigid anchor line. Brussels: CEN; 2014. Standard No. EN 353-1:2014.
  • European Committee for Standardization (CEN). Personal protective equipment against falls from a height – full body harnesses. Brussels: CEN; 2002. Standard No. EN 361:2002.
  • The European Parliament and the Council of the European Union. Regulation (EU) 2016/425 of the European Parliament and The Council of 9 March 2016 on personal protective equipment and repealing Council Directive 89/686/EEC. OJ. 2016;L81:51–98.
  • European Committee for Standardization (CEN). Personal protective equipment against falls from a height – test methods. Brussels: CEN; 1992. Standard No. EN 364:1992.
  • Humanetics. Crash test dummies [Internet]. Plymouth (MI): Humanetics; [cited 2017 Sep 16]. Available from: http://www.humaneticsatd.com/crash-test-dummies
  • Humanetics. Hybrid III 50M pedestrian [Internet]. Plymouth (MI): Humanetics; [cited 2017 Sep 16]. Available from: http://www.humaneticsatd.com/crash-test-dummies/pedestrian/hybrid-iii-50m
  • Jaśkiewicz M, Jurecki R, Więckowski D. Overview and analysis of dummies used for crash tests. Zeszyty Naukowe. Akademia Morska w Szczecinie. 2013;35(107):22–31.
  • Viano DC, Parenteau CS, Burnett R. Influence of standing or seated pelvis on dummy responses in rear impacts. Accid Anal Prev. 2012;45:423–431. doi: 10.1016/j.aap.2011.08.009
  • Peng Y, Chen Y, Yang J, et al. A study of pedestrian and bicyclist exposure to head injury in passenger car collisions based on accident data and simulations. Saf Sci. 2012;50:1749–1759. doi: 10.1016/j.ssci.2012.03.005
  • Hu J, Klinich KD, Reed MP, et al. Development and validation of a modified Hybrid-III six-year-old dummy model for simulating submarining in motor-vehicle crashes. Med Eng Phys. 2012;34:541–551. doi: 10.1016/j.medengphy.2011.08.013
  • Miyamoto S, Inoue S. Reality and risk of contact-type head injuries related to bicycle-mounted child seats. J Saf Res. 2010;41:501–505. doi: 10.1016/j.jsr.2010.10.004
  • Petrone N, Tamburlin L, Panizzolo F, et al. Development of an instrumented anthropomorphic dummy for the study of impacts and falls in skiing. Procedia Eng. 2010;2:2587–2592. doi: 10.1016/j.proeng.2010.04.036
  • Bartsch A, Benzel E, Miele V, et al. Hybrid III anthropomorphic test device (ATD) response to head impacts and potential implications for athletic headgear testing. Accid Anal Prev. 2012;48:285–291. doi: 10.1016/j.aap.2012.01.032
  • Petrone N, Panizzolo F, Marcolin G. Behaviour of an instrumented anthropomorphic dummy during full scale drop tests. Procedia Eng. 2011;13:304–309. doi: 10.1016/j.proeng.2011.05.089
  • Deemer E, Bertocci G, Pierce MC, et al. Influence of wet surfaces and fall height on pediatric injury risk in feet-first free falls as predicted using a test dummy. Med Eng Phys. 2005;27:31–39. doi: 10.1016/j.medengphy.2004.09.005
  • Raymond DE, Catena RD, Vaughan TR. Biomechanics and injury risk assessment of falls onto protective floor mats. Rehabilit Nurs. 2011;36(6):248–54. doi: 10.1002/j.2048-7940.2011.tb00090.x
  • Kloß G, Ottersbach HJ. Aufbau von Versuchseinrichtungen für Fallversuche mit einem Gliederdummy [Test stand for fall arrest tests with an anthropomorphic dummy]. Dortmund: Fachausschuß Persönliche Schutzausrüstung. 1993. (Abschlußbericht Nr. 8907112.2 zum Projekt nr. 6042.). German.
  • Baszczyński K. The application of a Hybrid III anthropomorphic dummy in testing personal fall arrest equipment. Meas Autom Monit. 2016;62(12):429–433.
  • Baszczyński K. Anthropomorphic manikins: testing PPE to protect against falls from height. Health & Saf Int. 2018;74:77–80.
  • Baszczyński K, Zrobek Z. Stalowe poziome liny zaczepowe [Horizontal flexible anchorage lines made from wire ropes]. Bezpieczeństwo Pracy. 1998;6:18–22.
  • Baszczyński K, Zrobek Z. Dynamic performance of horizontal flexible anchor lines during fall arrest – a numerical method of simulation. Int J Occup Saf Ergon. 2000;6(4):521–534. doi: 10.1080/10803548.2000.11076470
  • Miura N, Sulowski AC. Introduction to horizontal lifelines. In: Sulowski AC, editor. Fundamentals of fall protection. Toronto (ON): International Society for Fall Protection; 1991. p. 217–283.
  • Baszczyński K. Modeling the performance of horizontal anchor lines during fall arrest. Fibres Text East Eur. 2017;25(5):95–103. doi: 10.5604/01.3001.0010.4634
  • Baszczyński K, Zrobek Z. Wydłużenia urządzeń samozaciskowych jako źródło zagrożeń [Elongation of guided type fall arresters as a dangerous factor]. Bezpieczeństwo Pracy. 1998;1:17–20.
  • Baszczyński K. Influence of weather conditions on the performance of energy absorbers and guided type fall arresters on a flexible anchorage line during fall arresting. Saf Sci. 2004;42:519–536. doi: 10.1016/j.ssci.2003.08.003
  • Baszczyński K. Dynamic strength tests for low elongation lanyards. Int J Occup Saf Ergon. 2007;13(1):39–48. doi: 10.1080/10803548.2007.11076707
  • Baszczyński K, Jachowicz M. Load-elongation characteristics of connecting and shock-absorbing components of personal fall arrest systems. Fibres Text East Eur. 2012;20(6A):78–85.
  • Baszczyński K. Modeling the performance of selected textile elements of personal protective equipment protecting against falls from a height during fall arrest. Fibres Text East Eur. 2013;21(4):130–136.
  • Baszczyński K. Effect of repeated loading on textile rope and webbing characteristics in personal equipment protecting against falls from a height. Fibres Text East Eur. 2015;23(4):110–118.
  • European Committee for Standardization (CEN). Mountaineering equipment: dynamic mountaineering ropes: safety requirements and test methods. Brussels: CEN; 2002. Standard No. EN 892:2012+A1:2016.
  • Image Systems AB. Image systems motion analysis [Internet]; 2019 Oct 12 [cited 2020 March 29]. Available from: http://www.imagesystems.se/tema/motion/