254
Views
3
CrossRef citations to date
0
Altmetric
Articles

The correction of clothing insulation and ergonomic design through 3D CAD reverse engineering

ORCID Icon, ORCID Icon & ORCID Icon

References

  • D’Ambrosio Alfano FR, Olesen BW, Palella BI. Povl Ole Fanger’s impact ten years later. Energ Buildings. 2017;152:243–249. doi: 10.1016/j.enbuild.2017.07.052
  • Haslam RA, Parsons KC. A comparison of models for predicting human response to hot and cold environments. Ergonomics. 1987;30(11):1599–1614. doi: 10.1080/00140138708966050
  • Haslam RA, Parsons KC. Quantifying the effects of clothing for models of human response to the thermal environment. Ergonomics. 1988;31(12):1787–1806. doi: 10.1080/00140138808966828
  • Prek M. Thermodynamical analysis of human thermal comfort. Energy. 2006;31:732–743. doi: 10.1016/j.energy.2005.05.001
  • Wilson CA, Laing RM, Carr DJ. Air and air spaces – the invisible addition to thermal resistance. J Hum Environ Syst. 2002;5(2):69–77. doi: 10.1618/jhes.5.69
  • Havenith G, Heus R, Lotens WA. Resultant clothing insulation: a function of body movement, posture, wind, clothing fit and ensemble thickness. Ergonomics. 1990;33(1):67–84. doi: 10.1080/00140139008927094
  • Havenith G. Interaction of clothing and thermoregulation. Exogen Dermatol. 2002;1(5):221–230. doi: 10.1159/000068802
  • American Society of Heating, Refrigerating, and Air Conditioning Engineers (ASHRAE). Handbook fundamentals. SI ed. Atlanta (GA): ASHRAE; 2017. ISBN 1931862702.
  • Havenith G, Richards MGM, Wang X, et al. Apparent latent heat of evaporation from clothing: attenuation and ‘heat pipe’ effects. J Appl Physiol. 2008;104(1):142–149. doi: 10.1152/japplphysiol.00612.2007
  • Gulrajani ML, editor. Advances in the dyeing and finishing of technical textiles. Cambridge: Woodhead Publishing; 2013. ( Woodhead Publishing series in textiles; no. 138). ISBN 978085709-339.
  • Lee Y, Hong K, Hong S-A. 3D quantification of microclimate volume in layered clothing for the prediction of clothing insulation. Appl Ergon. 2007;38:349–355. doi: 10.1016/j.apergo.2006.04.017
  • Havenith G. Clothing heat exchange models for research and application. In: Holmer I, Kuklane K, Gao C, editors. Proceedings of 11th International Conference on Environmental Ergonomics. 22–26 May 2005, Ystad (Sweden): Lund University; 2005. p. 66–73.
  • Mert E, Psikuta A, Bueno M-A, et al. Effect of heterogenous and homogenous air gaps on dry heat loss through the garment. Int J Biometeorol. 2015;59:1701–1710. doi: 10.1007/s00484-015-0978-x
  • Huang J. Review of heat and water vapor transfer through multilayer fabrics. Text Res J. 2016;86(3):325–336. doi: 10.1177/0040517515588269
  • McCullough EA, Jones BW. A comprehensive data base for estimating clothing insulation. Manhattan: Report Institute Environment Research, Kansas State University; 1984. (IER Technical Report 8401).
  • Kwon J, Choi J. Clothing insulation and temperature, layer and mass of clothing under comfortable environmental conditions. J Physiol Anthropol. 2013;32(1). doi: 10.1186/1880-6805-32-11
  • Sullivan PJ, Mekjavic I. Temperature and humidity within the clothing microenvironment. Aviat Space Environ Med. 1992;63:186–192.
  • Zhang Z, Li J. Volume of air gaps under clothing and its related thermal effects. J Fiber Bioeng Informat. 2018;4(2):155–164. doi: 10.3993/jfbi06201106
  • Zhang ZH, Wang Y, Li J. Model for predicting the effect of an air gap on the heat transfer of a clothed human body. Fibres Text East Eur. 2011;19(4(87)):105–110.
  • McQuerry M, DenHartog E, Barker R. Analysis of air gap volume in structural firefighter turnout suit constructions in relation to heat loss. Text Res J. 2018;88(21):2475–2484. doi: 10.1177/0040517517723024
  • International Organization for Standardization (ISO). Ergonomics of the thermal environment – estimation of thermal insulation and water vapour resistance of a clothing ensemble. Geneva: ISO; 2007. Standard No. ISO 9920:2007.
  • Tuğrul Oğulata R. The effect of thermal insulation of clothing on human thermal comfort. Fibres Text East Eur. 2007;15(2):67–72.
  • Mert E, Böhnisc S, Psikuta A, et al. Determination of the air gap thickness underneath the garment for lower body using 3D body scanning. In: D’Apuzzo N, editor. Proceedings of the 6th International Conference on 3D Body Scanning Technologies; 27–28 October 2015; Lugano (Switzerland): Homometrica Consulting; 2015. p. 114–119.
  • Clark RP, de Calcina-Goff ML. Some aspects of the airborne transmission of infection. J R Soc Interface. 2009;6(6):767–782.
  • Liuxing T, Liang M. Using subject-specific three-dimensional (3D) anthropometry data in digital human modelling: case study in hand motion simulation. Ergonomics. 2016;59:1526–1539. doi: 10.1080/00140139.2016.1151554
  • Makiko K, Masaaki M. Analysis of 3D face forms for proper sizing and CAD of spectacle frames. Ergonomics. 2004;47(14):1499–1516. doi: 10.1080/00140130412331290907
  • Špelić I, Rogale D, Mihelić-Bogdanić A. The laboratory investigation of the clothing microclimatic layers in accordance with the volume quantification and qualification. J Text I. 2019;110:26–36. doi: 10.1080/00405000.2018.1462087
  • Petrak S, Špelić I, Mahnić Naglić M. The volumetric analysis of the human body as starting point for clothing pattern design. In: D’Apuzzo N, editor. Book of Proceedings of the 9th International Conference and Exhibition on 3D Body Scanning and Processing Technologies, 3DBODY.TECH 2018; 2018, Oct 16–17; Lugano (Switzerland): Hometrica Consulting; 2018. p. 83–91. ISBN 978-3-033-06970-1.
  • McCullough EA, Hong S. A data base for determining the decrease in clothing insulation due to body motion. ASHRAE Trans. 1994;100:765–775.
  • Daanen H, Hatcher K, Havenith G. Determination of clothing microclimate volume. In: Tochihara Y, Ohnaka T, editors. Proceedings of the 10th International Conference on Environmental Ergonomics 2002 September 23–27; Fukuoka (Japan): Kyushy Institute of Design; 2002. p. 665–668.
  • Cui Z, Fan J, Wu Y. A comparative study on the effects of air gap wind and walking motion on the thermal properties of Arabian Thawbs and Chinese Cheongsams. Ergonomics. 2016;59:999–1008. doi: 10.1080/00140139.2015.1111428
  • Pheasant S. Body space: anthropometry, ergonomics and the design of work. London: Taylor & Francis; 2003. ISBN 0-203-79089-8.
  • International Organization for Standardization (ISO). Size designation of clothes – men’s and boys’ outerwear garments. Geneva: ISO; 1977. Standard No. ISO 3636:1977.
  • International Organization for Standardization (ISO). Size designation of clothes – part 2: primary and secondary dimension indicators. Geneva: ISO; 2017. Standard No. ISO 8559-2:2017.
  • British Standards Institution (BSI). Size designation of clothes. Size labelling based on body measurements and intervals. London: BSI; 2017. Standard No. BS EN 13402 – 3:2017.
  • International Organization for Standardization (ISO). Standard sizing systems for clothes. Geneva: ISO; 1991. Standard No. ISO/TR 10652:1991.
  • Stewart A, Ledingham R, Furnace G, et al. Survival suit volume reduction associated with immersion: implications for buoyancy estimation in offshore workers of different size. Ergonomics. 2017;60:844–850. doi: 10.1080/00140139.2016.1188219
  • Špelić I. Impact of construction parameters on thermal properties of clothing [PhD thesis]. Zagreb: University of Zagreb, Faculty of Textile Technology; 2016
  • Yoon S-H, Lee J. Computing the surface area of three-dimensional scanned human data. Symmetry. 2016;8(7):67. doi: 10.3390/sym8070067
  • National Institute of Standards and Technology (NIST). NIST test no: 681/280055-10 for Geomagic Inc., Gaithersburg, (MD): United States Department of Commerce, National Institute of Standards and Technology; 2010.
  • International Organization for Standardization (ISO). Clothing – physiological effects – measurement of thermal insulation by means of a thermal manikin. Geneva: ISO; 2004. Standard No. ISO 15831:2004.
  • Dubois D, Dubois EF. A formula to estimate the approximate surface area if height and weight be known. Arch Intern Med. 1916;17:863–871. doi: 10.1001/archinte.1916.00080130010002
  • British Standards Institution (BSI). Protective clothing – ensembles and garments for protection against cold. London: BSI; 2004. Standard No. BS EN 342:2004.
  • British Standards Institution (BSI). Protective clothing – garment for protection against cool environments. London: BSI; 2004. Standard No. BS EN 14058:2004.
  • Fairhurst C, editor. Advances in apparel production. Cambridge: Woodhead Publishing; 2008. Woodhead Publishing series in textiles; no. 69). ISBN 978-1-84569-295-7.
  • International Organization for Standardization (ISO). D scanning methodologies for internationally compatible anthropometric databases. Geneva: ISO; 2010. Standard No. ISO 20685:2010.
  • Kakitsuba N. Investigation into clothing area factors for tight and loose fitting clothing in three different body position. J Hum Environ Syst. 2004;7:75–81. doi: 10.1618/jhes.7.75
  • Lotens WA. The actual insulation of multilayer clothing. Scand J Work Environ Health. 1989;15(1):66–75.
  • Lotens WA, Havenith G. Calculation of clothing insulation and vapour resistance. Ergonomics. 1991;34(2):233–254. doi: 10.1080/00140139108967309

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.