276
Views
1
CrossRef citations to date
0
Altmetric
Articles

Incorporation of hazard rectification performance for safety assessment

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon

References

  • Lingard H, Hallowell M, Salas R, et al. Leading or lagging? Temporal analysis of safety indicators on a large infrastructure construction project. Saf Sci. 2017;91:206–220. doi: 10.1016/j.ssci.2016.08.020
  • Guo BHW, Yiu TW. Developing leading indicators to monitor the safety conditions of construction projects. J Manage Eng. 2016;32(1):04015016. doi: 10.1061/(ASCE)ME.1943-5479.0000376
  • Rajendran S. Enhancing construction worker safety performance using leading indicators. Pract Period Struct Des Constr. 2013;18(1):45–51. doi: 10.1061/(ASCE)SC.1943-5576.0000137
  • Hinze J, Thurman S, Wehle A. Leading indicators of construction safety performance. Saf Sci. 2013;51(1):23–28. doi: 10.1016/j.ssci.2012.05.016
  • Reiman T, Pietikäinen E. Leading indicators of system safety – monitoring and driving the organizational safety potential. Saf Sci. 2012;50(10):1993–2000. doi: 10.1016/j.ssci.2011.07.015
  • Fang DP, Huang XY, Hinze J. Benchmarking studies on construction safety management in China. J Constr Eng Mange. 2004;130(3):424–432. doi: 10.1061/(ASCE)0733-9364(2004)130:3(424)
  • Hopkins A, Hopkins A. Thinking about process safety indicators. Saf Sci. 2009;47(4):508–510. doi: 10.1016/j.ssci.2008.07.020
  • Gunduz M, Talat Birgonul M, Ozdemir M. Development of a safety performance index assessment tool by using a fuzzy structural equation model for construction sites. Automat Constr. 2018;85:124–134. doi: 10.1016/j.autcon.2017.10.012
  • Robson LS, Ibrahim S, Hogg-Johnson S, et al. Developing leading indicators from OHS management audit data: determining the measurement properties of audit data from the field. J Saf Res. 2017;61:93–103. doi: 10.1016/j.jsr.2017.02.008
  • Saurin TA. Safety inspections in construction sites: a systems thinking perspective. Accid Anal Prev. 2016;93:240–250. doi: 10.1016/j.aap.2015.10.032
  • Sheehan C, Donohue R, Shea T, et al. Leading and lagging indicators of occupational health and safety: the moderating role of safety leadership. Accid Anal Prev. 2016;92:130–138. doi: 10.1016/j.aap.2016.03.018
  • Thurston E, Glendon AI. Association of risk exposure, organizational identification, and empowerment, with safety participation, intention to quit, and absenteeism. Saf Sci. 2018;105:212–221. doi: 10.1016/j.ssci.2018.02.012
  • Hallowell MR, Hinze JW, Baud KC, et al. Proactive construction safety control: measuring, monitoring, and responding to safety leading indicators. J Constr Eng Manag. 2013;139(10):04013010. doi: 10.1061/(ASCE)CO.1943-7862.0000730
  • Karakhan AA, Gambatese JA. Hazards and risk in construction and the impact of incentives and rewards on safety outcomes. Pract Period Struct Des Constr. 2018;23(2):04018005. doi: 10.1061/(ASCE)SC.1943-5576.0000359
  • Sansaniwal SK, Sharma V, Mathur J. Energy and exergy analyses of various typical solar energy applications: a comprehensive review. Renew Sustainable Energ Rev. 2018;82:1576–1601. doi: 10.1016/j.rser.2017.07.003
  • Rivas T, Paz M, Martín JE, et al. Explaining and predicting workplace accidents using data-mining techniques. Reliab Eng Syst Safe. 2011;96(7):739–747. doi: 10.1016/j.ress.2011.03.006
  • Pereira E, Han S, Abourizk S. Integrating case-based reasoning and simulation modeling for testing strategies to control safety performance. J Comput Civil Eng. 2018;32(6):04018047. doi: 10.1061/(ASCE)CP.1943-5487.0000792
  • Yiu NSN, Sze NN, Chan DWM. Implementation of safety management systems in Hong Kong construction industry – a safety practitioner’s perspective. J Safety Res. 2017;64:1–9. doi: 10.1016/j.jsr.2017.12.011
  • Grabowski M, Ayyalasomayajula P, Merrick J, et al. Leading indicators of safety in virtual organizations. Saf Sci. 2007;45(10):1013–1043. doi: 10.1016/j.ssci.2006.09.007
  • Kjellén U. The safety measurement problem revisited. Saf Sci. 2009;47:486–489. doi: 10.1016/j.ssci.2008.07.023
  • Rubio-Romero JC, Pardo-Ferreira MDC, De la Varga-Salto J, et al. Composite leading indicator to assess the resilience engineering in occupational health & safety in municipal solid waste management companies. Saf Sci. 2018;108:161–172. doi: 10.1016/j.ssci.2018.04.014
  • Deng X, Zheng S, Xu P, et al. Study on dissipative structure of China’s building energy service industry system based on brusselator model. J Clean Pro. 2017;150:112–122. doi: 10.1016/j.jclepro.2017.02.198
  • Long DN, Dai QT, Chandrawinata MP. Predicting safety risk of working at heights using Bayesian networks. J Constr Eng Manag. 2016;142(9):1–16.
  • Alruqi WM, Hallowell MR, Techera U. Safety climate dimensions and their relationship to construction safety performance: a meta-analytic review. Saf Sci. 2018;109:165–173. doi: 10.1016/j.ssci.2018.05.019
  • Hwang CL, Yoon K. Multiple attribute decision making. Berlin: Springer; 1981.
  • Parks G, Li J, Balazs M, et al. An empirical investigation on elitism in multiobjective genetic algorithms. Founda Comput Dec Sci. 2001;26(1):51–74.
  • Wang R, Rho S. Dynamics prediction of large-scale social network based on cooperative behavior. Sustain Cities Soc. 2019;46:101435. doi: 10.1016/j.scs.2019.101435
  • Yager RR. On ordered weighted averaging aggregation operators in multicriteria decisionmaking. IEEE Trans Systems Man Cybernet. 1988;18(1):183–190. doi: 10.1109/21.87068
  • Ray T. Constrained robust optimal design using a multiobjective evolutionary algorithm. In: Proceedings of the 2002 IEEE Congress on Evolutionary Computation. Vol. 1. Honolulu (HI): IEEE Press; 2002. P. 419–424. doi: 10.1109/CEC.2002.1006271
  • Coello CA, Pulido GT, Lechuga MS. Handling multiple objectives with particle swarm optimization. IEEE Trans Evolu. 2004;8(3):256–279. doi:10.1109/TEVC.2004.826-067 doi: 10.1109/TEVC.2004.826067
  • Alptekin O, Alptekin N. Analysis of criteria influencing contractor selection using TOPSIS method. IOP Conf Ser: Mater Sci Eng. 2017;245:062003. doi: 10.1088/1757-899X/245/6/062003
  • Mahmoud S, Zayed T, Fahmy M. Development of sustainability assessment tool for existing buildings. Sustain Cities Soc. 2019;44:99–119. doi: 10.1016/j.scs.2018.09.024
  • Zhang J, Yang T. Study of a roof water inrush prediction model in shallow seam mining based on an analytic hierarchy process using a grey relational analysis method. Arab J Geosci. 2018;11:153. doi: 10.1007/s12517-018-3498-2
  • Wu Q, Liu Z. Real formal concept analysis based on grey-rough set theory. Knowledge-Based Syst. 2009;22(1):38–45. doi: 10.1016/j.knosys.2008.06.001
  • Zavadskas EK, Turskis Z, Tamošaitiene J. Risk assessment of construction projects. J Civil Eng M. 2010;16(1):33–46. doi: 10.3846/jcem.2010.03
  • Wei J, Zhou L, Wang F, et al. Work safety evaluation in mainland China using grey theory. Appl Mathemat Model. 2015;39(2):924–933. doi: 10.1016/j.apm.2014.06.017
  • Gao C-L, Li S-C, Wang J, et al. The risk assessment of tunnels based on grey correlation and entropy weight method. Geotech Geolog Eng. 2018;36(3):1621–1631. doi: 10.1007/s10706-017-0415-5
  • Shi H, Li W, Meng W. A new approach to construction project risk assesment based on rough set and information entropy. In: Proceedings of 2008 International Conference on Information Management, Innovation Management and Industrial Engineering. Taipei: IEEE Press; 2009. p. 187–190. doi: 10.1109/ICIII.2008.85
  • Hatefi SM, Tamošaitienė J. Construction projects assessment based on the sustainable development criteria by an integrated fuzzy AHP and improved GRA model. Sustainability. 2018;10:991. doi: 10.3390/su10040991
  • Gorsevski PV, Jankowski P. Discerning landslide susceptibility using rough sets. Computers Envir Urban Syst. 2008;32(1):53–65. doi: 10.1016/j.compenvurbsys.2007.04.001
  • Bai C, Sarkis J. Evaluating supplier development programs with a grey based rough set methodology. Expert Sys Appl. 2011;38(11):13505–13517.
  • Wang L, Liu SY, Mu J. Post-evaluation of electric power construction project based on grey rough set. Appl Mechan Mater. 2013;448–453:2753–2756.
  • Liu A, Wei F. Risk assessment model based on grey rough sets. Chinese J Manag Sci. 2011;19(6):36–41.
  • Chang T, Jane C, Lee Y. A forecasting model of dynamic grey rough set and its application on stock selection. In: Proceedings of 2006 IEEE Conference on Cybernetics and Intelligent Systems. Bangkok: IEEE Press; 2006. p. 1–6. doi: 10.1109/ICCIS.2006.252320
  • Chong T, Yi S, Heng C. Application of set pair analysis method on occupational hazard of coal mining. Saf Sci. 2017;92:10–16. doi: 10.1016/j.ssci.2016.09.005
  • Yan F, Xu K. A set pair analysis based layer of protection analysis and its application in quantitative risk assessment. J Loss Prev Pro Industr. 2018;55:313–319. doi: 10.1016/j.jlp.2018.07.007
  • Wang Y, Jing H, Yu L, et al. Set pair analysis for risk assessment of water inrush in karst tunnels. Bull Eng Geol Environ. 2017;76:1199–1207. doi: 10.1007/s10064-016-0918-y
  • Cai W-L, Li J-S. Set pairs analysis model for synthetic performance appraisal. Berlin: Springer; 2011.
  • Su MR, Yang ZF, Chen B. Set pair analysis for urban ecosystem health assessment. Commun Nonlinear Sci. 2009;14(4):1773–1780. doi: 10.1016/j.cnsns.2007.07.019
  • Lianghai J, Sheng H, Huiyun X, et al. The risk evaluation of the engineering change based on the set pair analysis technology. In: Proceedings of Sixth International Conference on Measuring Technology and Mechatronics Automation. Zhangjiajie: IEEE Press; 2014. p. 757-761. doi: 10.1109/ICMTMA.2014.186
  • Wang X, Zhu J, Dong Y, et al. Safety evaluation management on the construction based on set pair analysis. In: Qi Luo, Min Zhu (Eds.), Proceedings of Third International Symposium on Intelligent Information Technology Application. Shanghai: IEEE Press; 2–22 Nov. 2009. p. 653–656.
  • Hu Q, Wang Z, Wu Y, et al. Dynamic performance evaluation model based on set pair analysis and its application. In: Y. H. Kim (Ed.), Proceedings of 2016 International Forum on Management, Education and Information Technology Application. Guangzhou: Atlantis Press; January 30–31, 2016. pp. 929–934. doi: 10.2991/ifmeita-16.2016.170
  • Zheng X-B, Chen G. Safety comprehensive assessment method based on set pair analysis and its applications. J Harbin Institute Tech. 2006;38(2):4–14.
  • Yunliang J, Congfu X, Yong L, et al. A new approach for representing and processing uncertainty knowledge. In: Proceedings of Fifth IEEE Workshop on Mobile Computing Systems and Applications. Las Vegas (NV): IEEE Press; 27–29 Oct. 2003. p. 466–470. doi: 10.1109/IRI.2003.1251452
  • Li F. Application of varying coefficient discrepancy degree in water quality evaluation of water supply networks. Procedia Environ Sci. 2013;18:243–248. doi: 10.1016/j.proenv.2013.04.031
  • Priestley J. The history and present state of electricity, with original experiments. 3rd ed. London: Cambridge University Press; 1767.
  • Canbek G. Cyber security by a new analogy: “the allegory of the ‘mobile’ cave”. J Appl Secur Res. 2018;13(1):63–88. doi: 10.1080/19361610.2018.1387838
  • Bartha P. Analogy and analogical reasoning. In: EN Zalta, editor. The Stanford encyclopedia of philosophy. Stanford, CA: The Metaphysics Research Lab Center for the Study of Language and Information; 2019. https://plato.stanford.edu/archives/spr2019/entries/reasoning-analogy/
  • Lighthill MJ, Whitham GB. On kinematic waves. II. A theory of traffic flow on long crowded roads. P Roy Soc A Math Phy. 1955;229(1178):317–345.
  • Richards PI. Shock waves on the highway. Oper Res. 1956;4:42–51. doi: 10.1287/opre.4.1.42
  • Peng G. A new lattice model of two-lane traffic flow with the consideration of optimal current difference. Commun Nonlinear Sci. 2013;18(3):559–566. doi: 10.1016/j.cnsns.2012.07.015
  • Zhao H, Zhang G, Li W, et al. Lattice hydrodynamic modeling of traffic flow with consideration of historical current integration effect. Physica A: Statis Mechan Appl. 2018;503:1204–1211. doi: 10.1016/j.physa.2018.08.072
  • Ma J, Chan CK, Ye Z, et al. Effects of maximum relaxation in viscoelastic traffic flow modeling. Transport Resear Part B: Method. 2018;113:143–163. doi: 10.1016/j.trb.2018.05.013
  • Sun Y. Kinetic Monte Carlo simulations of two-dimensional pedestrian flow models. Physica A: Statis Mechan Appl. 2018;505:836–847. doi: 10.1016/j.physa.2018.04.017
  • Qiu G, Song R, He S, et al. The pedestrian flow characteristics of Y-shaped channel. Physica A: Statis Mechan Appl. 2018;508:199–212. doi: 10.1016/j.physa.2018.05.015
  • Feliciani C, Nishinari K. Measurement of congestion and intrinsic risk in pedestrian crowds. Transport Resear Part C: Emerg Tech. 2018;91:124–155. doi: 10.1016/j.trc.2018.03.027
  • Kachani S, Perakis G. Fluid dynamics models and their applications in transportation and pricing. Euro J Opera Res. 2006;170(2):496–517. doi: 10.1016/j.ejor.2004.07.047
  • Wiendahl HH, Roth N, Westkämper E. Logistical positioning in a turbulent environment. CIRP Annals – Manuf Tech. 2002;51(1):383–386. doi:10.1016/S0007-8506(07)61-542-X doi: 10.1016/S0007-8506(07)61542-X
  • Efthymiou K, Papakostas N, Mourtzis D, et al. Fluid dynamics analogy to manufacturing systems. In: Proceedings of 42nd CIRP Conference on Manufacturing Systems. Grenoble, France: Elsevier B.V. 3–5 June 2009. https://www.researchgate.net/publication/258555815_''Fluid_Dynamics_Analogy_to_Manufacturing_Systems
  • Stricoff RS. Safety performance measurement: identifying prospective indicators with high validity. Prof Saf. 2000;45:36–39.
  • Pawlak Z. Rough sets: theoretical aspects of reasoning about data. Boston (MA): Kluwer Academic; 1991.
  • Li Y, Wu S, Lin Y, et al. Different classes’ ratio fuzzy rough set based robust feature selection. Knowledge-Based Syst. 2017;120(C):74–86. doi: 10.1016/j.knosys.2016.12.024
  • Wreathall J. Leading? Lagging? Whatever! Saf Sci. 2009;47:493–494. doi: 10.1016/j.ssci.2008.07.031
  • Han SU, Saba F, Lee SH, et al. Toward an understanding of the impact of production pressure on safety performance in construction operations. Acci Anal Prev. 2014;68(1):106–116. doi: 10.1016/j.aap.2013.10.007
  • Xia N, Zou PXW, Liu X, et al. A hybrid BN-HFACS model for predicting safety performance in construction projects. Saf Sci. 2018;101:332–343. doi: 10.1016/j.ssci.2017.09.025
  • Mao L, Feng D. Assessment of coal mine safety based on Bayesian method with entropy weight. In: Proceedings of 2018 Chinese Control and Decision Conference (CCDC). Shenyang: IEEE Press; 9–11 June 2018. p. 2924–2928.
  • Paz JC, Rozenboim D, Cuadros Á, et al. A simulation-based scheduling methodology for construction projects considering the potential impacts of delay risks. Constr Eco Build. 2018;18(2):41–69. doi: 10.5130/AJCEB.v18i2.5842
  • Esmaeili B, Hallowell MR, Rajagopalan B. Attribute-based safety risk assessment. II: predicting safety outcomes using generalized linear models. J Constr Eng Manag. 2015;141(8):04015022. doi: 10.1061/(ASCE)CO.1943-7862.0000981
  • Wu C, Fang D, Li N. Roles of owners’ leadership in construction safety: the case of high-speed railway construction projects in China. Inter J Proj Manag. 2015;33(8):1665–1679. doi: 10.1016/j.ijproman.2015.07.005

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.