661
Views
1
CrossRef citations to date
0
Altmetric
Articles

Exploring construction workers’ brain connectivity during hazard recognition: a cognitive psychology perspective

ORCID Icon, , ORCID Icon, &

References

  • Hinze J, Godfrey R, Rinker M. An evaluation of safety performance measures for construction projects. J. Constr Res. 2003;4; doi:10.1142/S160994510300025X.
  • Marcora SM, Staiano W, Manning V. Mental fatigue impairs physical performance in humans. J Appl Physiol Respir Environ Exerc Physio. 2009;106(3):857–864. doi:10.1152/japplphysiol.91324.2008.
  • Haslam RA, Hide SA, Gibb AGF, et al. Contributing factors in construction accidents. Appl Ergon. 2005;36(4):401–415. doi:10.1016/j.apergo.2004.12.002.
  • Leung M-Y, Chan I, Olomolaiye P. Impact of stress on the performance of construction project managers. J Constr Eng M. 2008; 134(8):644–652. doi:10.1061/(ASCE)0733-9364(2008)134:8(644).
  • Chen J, Song X, Lin Z. Revealing the ‘Invisible Gorilla’ in construction: estimating construction safety through mental workload assessment. Automat Constr. 2016;63:173–183. doi:10.1016/j.autcon.2015.12.018.
  • Aryal A, Ghahramani A, Becerik-Gerber B. Monitoring fatigue in construction workers using physiological measurements. Automat Constr. 2017;82:154–165. doi:10.1016/j.autcon.2017.03.003.
  • Wang D, Chen J, Zhao D, et al. Monitoring workers’ attention and vigilance in construction activities through a wireless and wearable electroencephalography system. Automat Constr. 2017;82:122–137. doi:10.1016/j.autcon.2017.02.001.
  • Jebelli H, Hwang S, Lee S. EEG-based workers’ stress recognition at construction sites. Automat Constr. 2018;93:315–324. doi:10.1016/j.autcon.2018.05.027.
  • Hwang S, Jebelli H, Choi B, et al. Measuring workers’ emotional state during construction tasks using wearable EEG. J Constr Eng M. 2018;144.
  • Ma Q, Fu H, Xu T, et al. The neural process of perception and evaluation for environmental hazards: evidence from event-related potentials. Neuroreport. 2014;25:607–611. doi:10.1097/WNR.0000000000000147.
  • Qin J, Han S. Neurocognitive mechanisms underlying identification of environmental risks. Neuropsychol. 2009;47(2):397–405. doi:10.1016/j.neuropsychologia.2008.09.010.
  • Liu Q. Influence mechanism of construction workers’ safety psychology on their safety behavior based on event-related potentials. Neuroquantology. 2018;16(6).
  • Zhang Y, Zhang M, Fang Q. Scoping review of EEG studies in construction safety. Int J Env Res Pub He. 2019;16:4146.
  • Zhou X, Hu Y, Liao P-C, et al. Hazard differentiation embedded in the brain: a near-infrared spectroscopy-based study. Automat Constr. 2021;122(C):103473, doi:10.1016/j.autcon.2020.103473.
  • Sun X, Liao P-C. Re-assessing hazard recognition ability in occupational environment with microvascular function in the brain. Safety Sci. 2019;120:67–78. doi:10.1016/j.ssci.2019.06.040.
  • Kowalski-Trakofler KM, Barrett EA. The concept of degraded images applied to hazard recognition training in mining for reduction of lost-time injuries. J Saf Res. 2003;34(5):515–525. doi:10.1016/j.jsr.2003.05.004.
  • Eggert J, Wersing H. Approaches and challenges for cognitive vision systems. 2009. (Sendhoff B, Korner E, Sporns O, et al., editors. Creating brain-like intelligence: from basic principles to complex intelligent systems; vol. 5436).
  • Ungerleider LG, Haxby JV. ‘What’ and ‘where’ in the human brain. Curr Opin Neurobiol. 1994;4(2):157–165. doi:10.1016/0959-4388(94)90066-3.
  • Polanía R, Paulus W, Nitsche M. Noninvasively decoding the contents of visual working memory in the human prefrontal cortex within high-gamma oscillatory patterns. J Cognitive Neurosci. 2012;24:304–314. doi:10.1162/jocn_a_00151.
  • Liao P-C, Sun X, Zhang D. A multimodal study to measure the cognitive demands of hazard recognition in construction workplaces. Safety Sci. 2021;133:105010, doi:10.1016/j.ssci.2020.105010.
  • Champod A, Petrides M. Dissociable roles of the posterior parietal and the prefrontal cortex in manipulation and monitoring processes. Proc Natl Acad Sci U S A. 2007;104:14837–14842. doi:10.1073/pnas.0607101104.
  • Noghabaei M, Han K, Albert A. Feasibility study to identify brain activity and eye-tracking features for assessing hazard recognition using consumer-grade wearables in an immersive virtual environment. J Constr Eng M. 2021;147(9):04021104. doi:10.1061/(ASCE)CO.1943-7862.0002130.
  • Fingelkurts AA, Fingelkurts AA, Kahkonen SJN, et al. Functional connectivity in the brain – is it an elusive concept? Neurosci Biobehav Rev. 2005;28(8):827–836. doi:10.1016/j.neubiorev.2004.10.009.
  • Chen OY, Cao H, Reinen J, et al. Resting-state brain information flow predicts cognitive flexibility in humans. Sci Rep. 2019;9(1):3879. doi: 10.1038/s41598-019-40345-8.
  • Bassett DS, Meyerlindenberg A, Achard S, et al. Adaptive reconfiguration of fractal small-world human brain functional networks. Proc Natl Acad Sci U S A. 2006;103(51):19518–19523. doi:10.1073/pnas.0606005103.
  • Bassett DS, Wymbs NF, Porter MA, et al. Dynamic reconfiguration of human brain networks during learning. Proc Natl Acad Sci U S A. 2011;108(18):7641–7646. doi:10.1073/pnas.1018985108.
  • Li Y, Cao D, Wei L, et al. Abnormal functional connectivity of EEG gamma band in patients with depression during emotional face processing. Clin Neurophysiol. 2015;126(11):2078–2089. doi:10.1016/j.clinph.2014.12.026.
  • Bassett DS, Yang M, Wymbs NF, et al. Learning-induced autonomy of sensorimotor systems. Nat Neurosci. 2015;18(5):744–751. doi: 10.1038/nn.3993.
  • Hutchison RM, Womelsdorf T, Allen EA, et al. Dynamic functional connectivity: promise, issues, and interpretations. Neuroimage. 2013;80:360–378. doi:10.1016/j.neuroimage.2013.05.079.
  • Bressler SL. Understanding cognition through large-scale cortical networks. Curr Dir Psychol Sci. 2002;11(2):58–61. doi:10.1111/1467-8721.00168.
  • Wilke C, Ding L, He B, editors. An adaptive directed transfer function approach for detecting dynamic causal interactions. In: 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society; 2007; Lyon. 2007.
  • van Mierlo P, Carrette E, Hallez H, et al. Accurate epileptogenic focus localization through time-variant functional connectivity analysis of intracranial electroencephalographic signals. Neuroimage. 2011;56(3):1122–1133. doi:10.1016/j.neuroimage.2011.02.009.
  • Xu Q, Chong H-Y, Liao P-C. Collaborative information integration for construction safety monitoring. Automat Constr. 2019;102:120–134. doi:10.1016/j.autcon.2019.02.004.
  • Wang J, Liao P-C. Re-thinking the mediating role of emotional valence and arousal between personal factors and occupational safety attention levels. Int J Env Res Pub He. 2021;18(11):5511. doi:10.3390/ijerph18115511.
  • Kaminski M, Blinowska KJ. A new method of the description of the information flow in the brain structures. Biol Cybern. 1991;65(3):203–210. doi:10.1007/BF00198091.
  • Roebroeck A, Formisano E, Goebel R. Mapping directed influence over the brain using Granger causality and fMRI. Neuroimage. 2005;25(1):230–242. doi:10.1016/j.neuroimage.2004.11.017.
  • Friston KJ. Functional and effective connectivity in neuroimaging: a synthesis. Hum Brain Mapp. 1994;2(1–2):56–78. Doi:10.1002/hbm.460020107.
  • Granger CWJ. Investigating causal relations by econometric models and cross-spectral methods. Econometrica. 1969;37(3):424–438. Doi:10.2307/1912791.
  • Kamiński M, Ding M, Truccolo WA, et al. Evaluating causal relations in neural systems: Granger causality, directed transfer function and statistical assessment of significance. Biol Cybern. 2001;85(2):145–157. Doi:10.1007/s004220000235.
  • Bönstrup M, Feldheim J, Heise K-F, et al. The control of complex finger movements by directional information flow between mesial frontocentral areas and the primary motor cortex. Eur J Neurosci. 2014;40.
  • Arnold M, Miltner WHR, Witte H, et al. Adaptive AR modeling of nonstationary time series by means of Kalman filtering. IEEE Trans Biomed Eng. 1998;45(5):553–562. doi:10.1109/10.668741.
  • Campi M. Performance of RLS identification algorithms with forgetting factor: a Φ-mixing approach. J Math Syst. 1998;7(1).
  • Luetkepohl H. The new introduction to multiple time series analysis. Springer; 2005.
  • Zhang L, Liang Y, Li F, et al. Time-varying networks of inter-ictal discharging reveal epileptogenic zone. Front Comput Neurosci. 2017;11:77. doi:10.3389/fncom.2017.00077.
  • Li F, Chen B, Li H, et al. The time-varying networks in P300: a task-evoked EEG study. IEEE Trans Neural Syst Rehabil Eng. 2016;24(7):725–733. doi:10.1109/TNSRE.2016.2523678.
  • Bertolero MA, Yeo BTT, Desposito M. The modular and integrative functional architecture of the human brain. Proc Natl Acad Sci U S A. 2015;112(49):E6798–E6807. doi:10.1073/pnas.1510619112.
  • Mijovic P, Milovanovic M, Kovic V, et al. Communicating the user state: introducing cognition-aware computing in industrial settings. Safety Sci. 2019;119:375–384. doi:10.1016/j.ssci.2017.12.024.
  • Kravitz DJ, Saleem KS, Baker CI, et al. A new neural framework for visuospatial processing. Nat Rev Neurosci. 2011;12(4):217–230. doi:10.1038/nrn3008.
  • Desimone R. Neural mechanisms of selective visual attention. Annu Rev Neurosci. 1995;18:193–222. doi:10.1146/annurev.ne.18.030195.001205.
  • Ptak R. The frontoparietal attention network of the human brain: action, saliency, and a priority map of the environment. Neuroscientist. 2012;18(5):502–515. doi:10.1177/1073858411409051.
  • Corbetta M, Patel G, Shulman GL. The reorienting system of the human brain: from environment to theory of mind. Neuron. 2008;58(3):306–324. doi:10.1016/j.neuron.2008.04.017.
  • Vossel S, Geng JJ, Fink GR. Dorsal and ventral attention systems: distinct neural circuits but collaborative roles. Neuroscientist. 2014;20(2):150–159. doi:10.1177/1073858413494269.
  • Bressler S, Tang W, Sylvester C, et al. Top-down control of human visual cortex by frontal and parietal cortex in anticipatory visual spatial attention. J Neurosci Official J Society Neurosci. 2008;28:10056–10061. doi:10.1523/JNEUROSCI.1776-08.2008.
  • Vossel S, Weidner R, Driver J, et al. Deconstructing the architecture of dorsal and ventral attention systems with dynamic causal modeling. J Neurosci Official J Society Neurosci. 2012;32:10637–10648. doi:10.1523/JNEUROSCI.0414-12.2012.
  • Brass M, Ullsperger M, Knoesche TR, et al. Who comes first? The role of the prefrontal and parietal cortex in cognitive control. J Cogn Neurosci. 2005;17(9):1367–1375. doi:10.1162/0898929054985400.
  • Tjong TG, Woldorff MG. Timing and sequence of brain activity in top-down control of visual-spatial attention. PLOS Biology. 2007;5(1):0114–0126.
  • Weber EMG, Hahn T, Hilger K, et al. Distributed patterns of occipito-parietal functional connectivity predict the precision of visual working memory. Neuroimage. 2017;146:404–418. doi:10.1016/j.neuroimage.2016.10.006.
  • Buckner RL, Andrews-Hanna JR, Schacter DL. The brain's default network – anatomy, function, and relevance to disease. Annals of the New York Academy of Sciences. 2008;1124:1–38. doi:10.1196/annals.1440.011.
  • Giesbrecht B, Weissman D, Woldorff M, et al. Pre-target activity in visual cortex predicts behavioral performance on spatial and feature attention tasks. Brain Research. 2006;1080:63–72. doi:10.1016/j.brainres.2005.09.068.
  • Sylvester C, Shulman G, Jack A, et al. Asymmetry of anticipatory activity in visual cortex predicts the locus of attention and perception. J Neurosci Official J Society Neurosci. 2008;27:14424–14433. doi:10.1523/JNEUROSCI.3759-07.2007.
  • Tafreshi TF, Daliri MR, Ghodousi M. Functional and effective connectivity based features of EEG signals for object recognition. Cogn Neurodyn. 2019;13(6):555–566. doi:10.1007/s11571-019-09556-7.
  • van den Broek SP, Reinders F, Donderwinkel M, et al. Volume conduction effects in EEG and MEG. Electroencephalogr Clin Neurophysiol. 1998;106(6):522–534. doi:10.1016/S0013-4694(97)00147-8.
  • Ferdek MA, Adamczyk AK, van Rijn CM, et al. Pain catastrophizing is associated with altered EEG effective connectivity during pain-related mental imagery. Acta Neurobiol Exp. 2019;79(1):53–72.
  • Hasanzadeh S, Esmaeili B, Dodd M. Impact of construction workers’ hazard identification skills on their visual attention. J Constr Eng M. 2017;143.
  • Pandit B, Albert A, Patil Y, et al. Impact of safety climate on hazard recognition and safety risk perception. Safety Sci. 2018;113:44–53. doi:10.1016/j.ssci.2018.11.020.
  • Li F, Wang F, Zhang L, et al. The dynamic brain networks of motor imagery: time-varying causality analysis of scalp EEG. Int J Neural Syst. 2018;29.
  • Li F, Jiang L, Zhang Y, et al. The time-varying networks of the wrist extension in post-stroke hemiplegic patients. Cogn Neurodyn. 2021. doi:10.1007/s11571-021-09738-2

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.